
Collagens of all types are known to bind 
the fibronectin vresent in culture media 
supplemented with whole serum (15). 
The collagen in HEMA gels may there- 
fore be an effective substrate for fiber 
growth because of its ability to collect 
fibronectin. If this were so, we would 
expect other molecules that bind fibro- 
nectin to be effective when incorporated 
into HEMA gels. Yet heparin, which 
does bind fibronectin (16) did not pro- 
mote fiber growth. Furthermore, PNGF, 
which we have found to be active in 
supporting fiber growth and has been 
shown by others to affect the extent and 
direction of nerve fiber outgrowth (I 7) ,  is 
not known to bind fibronectin. It seems 
likely that PNGF interacts directly with 
its own receptors on the cell surfaces of 
neurons and their processes. Wheat 
germ agglutinin, which also binds to the 
surfaces of these neurons (9) more exten- 
sively than does PNGF, might be expect- 
ed to be more adhesive but it supports 
little nerve fiber growth. At least two 
sets of distinct molecular interactions 
between the growth cone and the culture 
substrate appear to be effective in per- 
mitting nerve fiber growth. 

From these studies we have distin- 
guished two types of adhesive interac- 
tions between cultured neurons and their 
substrates: one that permits attachment 
of neurons and a second, more specific, 
adhesive interaction required for nerve 
fiber growth. Beyond being useful for 
experiments with well-characterized 
macromolecules, hydrogel substrates 
should be valuable in analyzing complex 
substrates including microexudates and 
cell surfaces to identify those compo- 
nents that support and direct nerve fiber 
growth in vivo. In addition, it should be 
possible to prepare stable gradients of 
macromolecules that may stimulate 
chemotaxis of growth cones (17). Final- 
ly, the well-known biocompatibility of 
HEMA gels used as tissue implants sug- 
gests that HEMA gels might be used for 
the manufacture of prostheses that 
would promote nerve fiber regeneration. 
Severed nerves realigned by HEMA-gel 
cuffs containing macromolecules appro- 
priate to support regeneration might im- 
prove the chances of functional reinner- 
vation. 
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Anticonvulsant Action of Excitatory Amino Acid Antagonists 

Abstract. Compounds that antagonize neuronal excitation induced by dicarhoxylic 
amino acids were tested in two animal models of epilepsy, namely sound-induced 
seizures in DBAI2 mice and threshold pentylenetetrazol seizures in Swiss mice. 
Sound-induced seizures could be prevented by intracerehroventricular injection of 
compounds that block excitation due to N-methyl-D-aspartic acid. The most potent 
such compound, 2-amino-7-phosphonoheptanoic acid, was anticonvulsant in both 
test systems when given either intraperitoneally or intracerehroventricularly. Specif- 
ic antagonists of excitation that is caused by amino acids provide a new class of 
anticonvulsant agents. 

In focal epilepsy, in reflex epilepsy, 
and in primary generalized epilepsy with 
tonic or clonic motor signs, the develop- 
ment of clinically evident convulsive ac- 
tivity depends on the recruitment of nor- 
mal neurons into paroxysmal patterns of 
firing (I). Since this process depends on 
excitatory neurotransmission it can be 
prevented by antagonists of excitatory 
neurotransmitters. The dicarboxylic 
amino acids in the brain are universally 
excitatory when applied by microionto- 
phoresis to the mammalian central ner- 
vous system (2). The most abundant of 
these amino acids, glutamic and aspartic 
acids, appear to act as excitatory neuro- 
transmitters in many brain areas, includ- 

ing the neocortex, hippocampus, cere- 
bellum, and sensory afferent pathways 
(3). Studies with analogs of glutamic and 
aspartic acids, including various cyclic 
compounds, have led to the description 
of three classes of receptors for dicar- 
boxylic amino acids: receptors that are 
most potently activated by N-methyl-D- 
aspartic acid (NMDA); those that are 
activated preferentially by quisqualic 
acid; and those that are activated by 
kainic acid (2, 4). Comparison of the 
effects of various antagonists either in 
the spinal cord or the rat cortex shows 
that activation by N-methyl-D-aspartic 
acid is preferentially blocked by 2-ami- 
no-5-phosphonopentanoic acid and 2- 
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Table 1. Anticonvulsant activity of excitatory amino acid antagonists in DBAI2 mice. Groups of DBAl2 mice (N = 6 to lo), 21 to 28 days old, 
were injected intracerebroventricularly under light ether anesthesia with 10 p1 of drug solution or phosphate buffer alone @H 7.3). Auditory 
stimulation (electric bell generating 109 dB at mouse level) was applied 45 minutes later, for 60 seconds or until tonic extension was observed, and 
the incidence and timing of the phases of the seizure response were recorded. These included an initial wild running phase (WR) followed by 
myocolonus, tonic flexion, and extension and, frequently, respiratory arrest. Seizure response was scored as previously documented (15) and 
comparisons between groups of control and drug-treated animals were made by using Fisher's exact probability test. Successive doses, with a 
geometric factor of 3, were tested until an adequate log dose-response curve (three to six points) could be constructed for each antagonist for each 
phase of the seizure response, and EDso values were graphically determined. A rank order of anticonvulsant potency was allocated to each 
antagonist for comparison with iontophoretic data (5). 

Antagonist 

Minimum 
dose to ED,,, (pmole) Relative Relative 

anti- suppress NMDA 

WR* convulsant antagonist 
WR Clonus Tonus potency potencyt 

()*.mole) 

D-a-Aminoadipic acid 
Glutamic acid diethylester 
y-D-Glutamylglycine 
(2)-2-Amino-4-phosphonobutyric acid 
(t)-2-Amino-5-phosphonopentanoic acid 
(t)-2-Amino-6-phosphonohexanoic acid 
(?)-2-Amino-7-phosphonoheptanoic acid 
(+)-2-Amino-7-phosphonoheptanoic acid 
(-)-2-Amino-7-phosphonoheptanoic acid 

0 
0 
X 
0 
X 

(XI 
XXX 
XX 

XXXX 

(XI 
XX 
(X) 

XXX 
XX 

XXXX 

*P < .01. +See Perkins and co-workers (5). $Inactive. 

amino-7-phosphonoheptanoic acid, where- 
as activation by quisqualic acid is prefer- 
entially blocked by L-glutamic acid 
diethylester (4, 5). The dipeptide y-D- 
glutamyl glycine antagonizes excitation 
due to kainic acid or to NMDA but not 
that due to quisqualic acid (2, 4). 

We have investigated the role of excit- 
atory amino acids in the development of 
seizure responses by administering se- 
lective antagonists (6) of these excitants 
to DBAR mice, an inbred strain in 
which, within a critical age range, a fixed 
sequence of seizure responses can be 
induced by a loud sound (7) and to mice, 
not genetically seizure prone, injected 
with a minimal convulsant dose of pen- 
tylenetetrazol (8). 

To avoid differential effects of the 
blood-brain barrier on the antagonist and 
to allow comparison with data derived 
from iontophoretic experiments, we 
used intracerebroventricular as well as 
intraperitoneal injections. 

Table 1 shows that the "quisqualic 
acid receptor" antagonist glutamic acid 
diethylester does not provide protection 
against audiogenic seizures. D-a-Amino- 
adipate, a selective but relatively weak 
NMDA receptor antagonist (4), is also 
inactive in this test system. However, 
the phosphono derivatives of aliphatic 
amino acids that antagonize NMDA-in- 
duced excitation block all stages of the 
audiogenic seizure response. The phos- 
phonoheptanoic acid derivative is the 
most potent of the series. The relative 
anticonvulsant potencies of these com- 
pounds match their relative potencies as 
antagonists of excitation caused by ion- 
tophoretic administration of NMDA to 
the rat cortex (5). The greater activity of 
the D-(-) isomer of 2-amino-7-phos- 
phonoheptanoic acid compared with the 
(+) isomer also corresponds to the rela- 
tive activities of the two isomers after 
iontophoretic application. This correla- 
tion suggests that excitatory neurotrans- 

mission mediated by the NMDA recep- 
tor plays an important role in the initia- 
tion or spread of epileptic neuronal hy- 
peractivity. The fact that y-D-gluta- 
mylglycine is active against all phases of 
the audiogenic seizure response is con- 
sistent with its antagonism of NMDA- 
induced excitation (although an action 
on kainic acid receptor-mediated excita- 
tion cannot be excluded). Evaluation of 
the possible role of actions on kainic acid 
receptors requires more specific kainic 
acid receptor antagonists than are avail- 
able at present. 

Excitatory amino acids are involved in 
sensory afferent transmission, including 
that of the auditory system-VIIIth crani- 
al nerve relay in the cochlear nucleus (9). 
The audiogenic seizure model is critical- 
ly dependent on a functionally intact 
auditory system. Blockade of transmis- 
sion within this pathway could give a 
misleading appearance of anticonvulsant 
activity. The data in Table 1 suggest that 

Table 2. Effect of (2)-2-amino-7-phosphonoheptanoic acid on audiogenically induced and pentylenetetrazol-induced seizures in mice. Studies of 
audiogenic seizures were performed as outlined in the legend to Table 1. For intraperitoneal administration the antagonist was injected with 0.1 
ml of saline 45 minutes before testing. Antagonism of pentylenetetrazol (PTZ: threshold) seizures was studied in random-bred Swiss mice (Tuck 
TI0 strain; 28 days old; 20 to 23 g). Mice in groups ( N  = 10) received pentylenetetrazol (85 mglkg; 0.85 percent solution in 0.9 percent sodium 
chloride) subcutaneously in a loose fold of skin on the back of the neck 45 minutes after intracerebroventricular or intraperitoneal administration 
of drug or vehicle. During the 30-minute observation period sustained rhythmic clonic jerking with tonic spasms occurred in 90 to 100 percent of 
control mice. The incidence and timing of clonic episodes was recorded, with absence of sustained clonic jerking (no episode of 5 seconds 
duration or longer) being defined as protection (8). The ED,, values and 95 percent fiducial limits were estimated by using the method of moving 
averages (16) with data from four successive dose levels. 

Antagonist 

Minimum 
Route of dose to EDSO EDS0 PTZ 

administration suppress (95 percent 

WR* WR Clonus Tonus fiducial limits) 
- - 

(2)-2-Am~no-7-phosphono- Intracerebroventricular 0.01 pmole 0.004 0.0018 0.0008 0.64 (0 19-2.13) pmole 
heptanoic acid 

Intraperitoneal 0.33 mmolelkg 0.18 0.04 0.04 1.18 (0.97-1.43) mmolelkg 

*P < .01. 
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this might be a contributory factor but 
cannot be the principal mechanism (10). 

The test for threshold pentylenetetra- 
zol seizures in Swiss mice indicates a 
direct anticonvulsant action of (+.)-2- 
amino-7-phosphonoheptanoic acid (Ta- 
ble 2). This seizure model is not critically 
dependent on sensory afferent transmis- 
sion. Because pentylenetetrazol has a 
diffuse action in the nervous system it is 
not an optimal test system for an agent 
preventing the progressive recruitment 
of normal neurons by excitatory neuro- 
transmission (1 1). 

An anticonvulsant action of (*)-2- 
amino-7-phosphonoheptanoic acid was 
found in both test systems after systemic 
administration (Table 2). The greater ef- 
ficacy of the compound against audio- 
genic seizures when it was given intra- 
cerebroventricularly suggests that ac- 
cess to critical sites of action is facilitat- 
ed by this method of administration (12). 

These findings indicate that selective 
antagonists of amino acid-induced exci- 
tation provide an anticonvulsant action 
comparable both in terms of efficacy (13) 
and acute toxicity (14) to that of some 
drugs in clinical use. Testing of such 
antagonists in man for their efficacy 
against reflex epilepsy and focal or gen- 
eralized seizures must await further 
study of their selectivity of action and 
short- and long-term toxicity. 
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