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dation states would be as follows: actin- 
ium, 111; thorium, IV; protactinium, V; 
and uranium, VI. Our objective was to 
determine whether actinides in all oxida- 
tion states are present at elevated con- 
centrations in Mono Lake. 

A surface-water sample (- 11 liters) 
was obtained from the western shore of 
the lake and shipped in a plastic Cubi- 
tainer to Woods Hole Oceanographic 
Institution without any pretreatment. A 
chlorinity analysis showed that our sam- 
ple contained lake water diluted with 
fresh spring water (8). Visible amounts 
of particulate material were present. No 
attempt was made to remove the parti- 
cles for fear of losing some of the dis- 
solved actinides. The concentrations of 
the actinides were measured by isotope 
dilution and a-spectrometry (9). 

The actinide activities in the lake wa- 
ter are compared with the seawater acti- 
nide activities in Table 1. The activities 
of the thorium isotopes and 2 3 1 ~ a  show 
the greatest enhancement, with values 
lo3 to 10' times greater in Mono Lake 
than in the deep ocean. Steady-state 
concentrations of chemically reactive ac- 
tinides such as 2 3 0 ~ h  and 231Pa can be 
represented as a balance between their 
rates of supply and removal: 

where A is the concentration of the acti- 
nide, S is its rate of supply, A is its 
radioactive decay constant, and Q is the 
rate constant for chemical removal. The 
residence time with respect to chemical 
removal, T,  is defined as l/$. Since 
A = S/(A + Q), high values of A in Mono 
Lake compared to other bodies of water 
could be accounted for either by a higher 
rate of supply or by a lower rate of 
chemical removal. Therefore, residence 
time is a better measure than concentra- 
tion by which to compare the mobilities 
of actinides in different bodies of water. 

The isotopes 2 3 0 ~ h  and 2 3 1 ~ a  are pro- 
duced in Mono Lake by the radioactive 
decay of 2 3 4 ~  and 2 3 5 ~ ,  respectively. In 
view of the salt budget for the lake (lo), 
the supply of 2 3 0 ~ h  and 2 3 1 ~ a  by stream 
runoff should be insignificant, and the 
quantity of uranium in the lake may be 
considered constant with time. There- 
fore, in Eq. 1 we can represent S as AAu, 
where A" is the concentration of the 
appropriate uranium isotope parent. The 
calculated residence times of 2 3 0 ~ h  
(668 * 23 years) and 2 3 1 ~ a  (343 * 15 
years) are much shorter than their radio- 
active half-lives, and so the loss of both 
isotopes from Mono Lake water must 
occur almost entirely by chemical re- 
moval rather than by radioactive decay 
These residence times are several times 

Table 1. Actinide activities in Mono Lake water and seawater; N.D., not determined. 
- - 

Mono Lake* Seawater 
Isotope Valence (dprn/103 liters) (dprn/103 liters) 

N.D. 
0.3 to 0.7 (18) 

*This work Errors are + 1u countlng statistics These values are for Mono Lake water d~luted with fresh 
spring water (8) topen ocean surface water $Nearshore surface ocean water 

Table 2. Radioisotope activity ratios in Mono Lake water and seawater; N.D., not determined. 

Ratio Mono Lake Seawater 

234~1238" 1.14 t 0.01 1.14 + 0.03 (23) 
228Th/232Th 1.19 + 0.05 50 to 100+ (9) 
230Th/231Pa 21.1 t 1.0 3 to 5 (9) 
230Th/231Pa 1.4; 3.4 (11) 
* * ' A c / * ~ ~ P ~  < 0.08 N.D. 
241~~/239.240p~ 0.11 + 0.03 0.2 to 0.3 (18) 

greater than in the deep ocean = 15 
to 40 years (8, 11-13); 7pa = 30 to 130 
years (8, 11, 13)]. However, it is more 
appropriate to compare T T ~  and 7pa in 
Mono Lake with values from surface 
seawater and estuarine environments 
where the concentrations of particulate 
matter are more like those in Mono 
Lake. The value of 7pa has not been 
determined accurately in surface seawa- 
ter, but T T ~  is less than 1 year in open- 
ocean surface seawater (14, 15) and is 
only a few days in coastal and estuarine 
waters (16). The elevated concentrations 
of 2 3 0 ~ h  and 2 3 1 ~ a  in Mono Lake must 
then reflect a pronounced inhibition of 
chemical removal as compared to the 
situation in seawater and not merely 
elevated rates of supply. The high con- 
centration of 2 3 2 ~ h  in Mono Lake (Table 
I), which must be derived entirely by 
leaching from detrital minerals, further 
attests to the solubilizing effect of Mono 
Lake water. 

Mono Lake is currently drying up as a 
result of the diversion of inflow to Los 
Angeles, and so the measured concentra- 
tions may not represent steady-state val- 
ues. However, and T P ~  are calculated 
from the 2 3 0 ~ h i 2 3 4 ~  and 2 3 1 ~ a i 2 3 5 ~  ra- 
tios, respectively. As these residence 
times are much greater than the period 
over which the concentrations may have 
been changing, we believe that the ratios 
should have changed little and that these 

residence times give good first-order es- 
timates of the chemical removal rates in 
Mono Lake. 

All actinides are not solubilized to the 
same extent in Mono Lake. For exam- 
ple, T T ~  is greater by about a factor of 2 
than T P ~ ,  whereas rpa is greater by a 
factor of 2 or more than T T ~  in the deep 
ocean (9). Therefore, although chemical 
removal of both thorium and protactini- 
um is greatly reduced in Mono Lake as 
compared to seawater, the solubilizing 
effect is significantly greater for thorium 
than for protactinium. If the residence 
times of trivalent actinides in Mono Lake 
water were as great as those of thorium 
and protactinium, 2 2 7 ~ ~ ,  with a half-life 
of 21.8 years, would be in radioactive 
equilibrium with its parent, 231Pa (that is, 
2 2 7 ~ ~ / 2 3 1 ~ a  = 1.0). Only an upper limit 
for the concentration of 2 2 7 ~ ~  could be 
set for Mono Lake water, but the actin- 
ium/protactinium activity ratio is clearly 
much less than 1.0 (Table 2). Similarly, 
the 241Am?-399240~~ activity ratio (Table 
2) is less than half the ratio observed in 
seawater and in atmospheric fallout (1 7, 
18). Therefore, Ac(II1) and Am(II1) are 
more efficiently removed from Mono 
Lake than thorium, protactinium, and 
plutonium. 

Simpson et al. (4) suggested that com- 
plexation by C032- may be repsonsible 
for the high concentrations of plutonium 
in Mono Lake, and others (5, 19) have 
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given evidence for the increased solubili- 
ty of actinides in oxidation states IV, V, 
and VI as a result of ~032- complex- 
ation. We have attempted to quantify the 
effect of C0?- complexing through the 
use of computer models but have been 
frustrated by the lack of suitable thermo- 
dynamic data on actinide complexes. 
Simulations of the solution equilibrium 
chemistry by means of the computer 
program MINEQL (20), incorporating 
removal processes similar to those in the 
ocean (2), were made with and without 
the effect of C03'- complexing. Let us 
consider the case of thorium, for which 
the solubilizing effect is largest (Table 1). 
In the absence of ~ 0 ~ ~ -  complexing, the 
dominant thorium species is Th(OH)4 
(21), which would lead to rapid removal 
by adsorption. The simplest carbonate 
species we could invoke which would 
compete effectively with Th(OH)4 is 
Th(C03)(0H)2. If we assign log K = 6 
for the formation constant of this spe- 
cies, then 98 percent of the dissolved 
thorium would be in this form. Our edu- 
cated guess is that this is a lower limit 
and that log K > 6 is likely. 

We believe, therefore, that the elevat- 
ed concentrations of actinides in Mono 
Lake could be maintained largely by 
complexation with ~ 0 3 ~ - .  Other ligands 
may also be important. The effective 
solubilities of actinides in oxidation 
states IV, V, and possibly VI in this lake 
are greatly enhanced relative to seawater 
by complexation with natural ligands at 
the concentrations found in Mono Lake. 
The solubilities of trivalent actinides are 
not as strongly enhanced. The marked 
solubilizing effect of natural alkaline 
brines on the actinide elements has im- 
portant implications for the management 
of radioactive waste and its transport in 
ground water. Our ability to model this 
effect would be greatly enhanced by the 
availability of thermodynamic data on 
actinide carbonate species. 

R. F. ANDERSON* 
M. P. BACON 

P. G. BREWER 
Department of Chemistry, 
Woods Hole Oceanographic Institution, 
Woods Hole, Massachusetts 02543 
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Deep Advective Transport of Lithogenic Particles in 
Panama Basin 

Abstract. Sediment traps were deployed at several depths between 660 and 3800 
meters in the Panama Basin. The flux of lithogenic particles increased with 
increasing depth. This increase was due primarily to particles of beidellite (a 
smectite clay), which was identical to the clay occurring in bottom sediment on the 
continental slope to the west of the sediment trap mooring. The beidellite vertical 
j u x  at the Panama Basin station increased when an easterly current prevailed and 
decreased when the current reversed, indicating that a major portion of smectite was 
transported horizontally at mid-water depth to the mooring site from the nearby 
continental slope. 

Six Parflux Mark I1 sediment traps (I) 
with 1.5-m2 openings were deployed at 
depths of 667 to 3791 m at 5"21rN, 
81°53'W in the Panama Basin. This sta- 
tion, which is 3856 m deep, is located at 
the center of a small, deep basin between 
the Coiba and Malpelo ridges (Fig. 1) 
(2). Mass flux, measured by this set of 
sediment traps, increased significantly 
from 1268 to 3791 m. The increase was 
due to the increasing flux of lithogenic 
material, particularly smectite particles 
(Table 1). 

A Parflux trap deployed at 2265 m was 
equipped with a receptacle changer, 
which changes the sediment receiving 
chamber every 30 days, yielding a time 
series of sediment flux. A cylindrical 
trap with an opening of 0.05 m2 was 
deployed at 1267 m. This trap also had a 
receptacle changer and was set to collect 
sediment every 15 days (JZF trap) (3). 
To start a new collecting period in these 
two traps the timing was synchronized 
by electronic timers which operated 
within an error of a few hours (4). 
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