
Perfect Shuffles and Their Relation to Math 
A magician's trick turns out to be based on a very hard 

mathematics problem. Three researchers now have solved the problem 

Persi Diaconis, a slow-talking statisti- 
cian from Stanford, takes a deck of cards 
from his briefcase. He has come to talk 
about the mathematics of perfect shuffles 
and, he says, "You can't talk about a 
perfect shuffle without seeing one." He 
divides the cards in two piles and then 
quickly does a riffle shuffle. The two 
stacks are perfectly interlaced in the 
shuffled deck. 

Diaconis, who ran away from home at 
age 14 to become a magician, is one of 
only about 200 of the tens of thousands 
of magicians in the world who can do a 
perfect shuffle. And he is one of only 
about 25 who can do eight perfect shuf- 
fles in a row to bring a 52-card deck back 
in order. His lifelong fascination with 
these shuffles led him to an intrigu- 
ing and very difficult mathematics prob- 
lem-How can you characterize all the 
possible arrangements of cards when a 
deck, containing an arbitrarily chosen 
number of cards, is perfectly shuffled 
over and over again? 

Diaconis, working with Ronald Gra- 
ham of Bell Laboratories and William 
Kantor of the University of Oregon, has 
spent the past 6 months working on and 
solving this problem. The solution turns 
out to be related to problems in group 
theory, one of the most theoretical areas 
of mathematics, and to problems in com- 
puter science, one of the most applied 
areas of mathematics. The story of how 
these researchers came upon and solved 
the perfect shuffle problem is one of 
coincidences and surprising interconnec- 
tions in mathematics. And it illustrates, 
says Kantor, that although "shuffling 
sounds like a ridiculous thing to be paid 
to think about, it really isn't. It's not as 
silly as it sounds." 

Perfect shuffles, Diaconis explains, 
are of two types, called "in" and "out. " 
Both types start out the same. A deck of 
cards is divided exactly in half and the 
two halves are shuffled so that they are 
perfectly interlaced. An "out" shuffle, 
leaves the original top card of the deck 
on top of the shuffled deck. In an "in" 
shuffle, the original top card is the sec- 
ond from the top of the shuffled deck. 

"I have done perfect shuffles for 
years," Diaconis says. "When I was a 
kid, I noticed something interesting." 
He found that if he wanted to get the top 
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card of the deck into a particular posi- 
tion, say the fourteenth from the top of 
the deck, all he had to do was express 
the number 14 - 1, or 13, in binary 
notation, as 0's and 1's. Then if he 
thought of each 0 as an out shuffle and 
each 1 as an in shuffle and did that 
sequence of shuffles, the top card 
showed up where he wanted it-in this 
case, in position 14. 

Diaconis was intrigued. He general- 
ized the problem and asked how one 
could follow the rearrangements of a 
deck that occur with sequences of in and 
out shuffles. "I brooded on and off about 
this problem for close to 25 years," he 
says. "It turns out to be a very hard 
problem. " 

He looked for clues in books on cheat- 
ing at cards and found that references to 
cheating by means of perfect shuffles go 
back to 1726. But no magicians or card 
sharks ever solved the mathematical 
problem that Diaconis posed. Then, last 
year, Diaconis and other faculty mem- 
bers at Stanford received a letter from 
Donald Knuth, a computer science pro- 
fessor at Stanford, saying that he had 
some students in a programming course 
who, as part of their course work, were 
to help solve faculty members' comput- 
ing problems. Diaconis and the other 
faculty members were asked if they had 
any good problems for the students. 

Diaconis immediately thought of his 
card-shuffling problem. "I just couldn't 
touch that problem theoretically," he 
recalls, so he thought perhaps one of 
Knuth's students could make some prog- 
ress on a computer by brute force. 

"Persi's problem appealed to Eric 
Hamilton," says Knuth, explaining that 
Hamilton, an undergraduate student be- 
gan by programming the Stanford com- 
puter to determine all possible card rear- 
rangements resulting from perfect shuf- 
fles of decks of various sizes. But he 
soon found that he could not go farth- 
er than decks of ten cards because the 
number of possibilities became so large. 
Even for a deck of ten cards it took the 
computer 20 minutes to do the calcula- 
tions. 

The next step was to try to be more 
clever about the computer programming. 
In group theory, Diaconis remarks, there 
are some ingenious computer algorithms 

that mathematicians devised to deter- 
mine the order of a group with a given set 
of generators-a problem analogous to 
the problem of the perfect shuffle. Ham- 
ilton and Diaconis decided to use one of 
these algorithms developed by Charles 
Sims of Rutgers University. The Sims 
algorithm, Diaconis says, "is a totally 
non-obvious way of working with these 
objects [the generators of groups] on a 
computer." Knuth, who by this time was 
also intrigued by Diaconis' problem, 
made some improvements in Sims' algo- 
rithm and they were set to go. 

Hamilton programmed the computer 
to calculate the order of the shuffle 
g r o u p h o w  many different card combi- 
nations can occur-for decks up to size 
52. Even with the Sims algorithm, this 
was a difficult problem, taking 4 hours of 
computer time. 

"Now we had these lists of numbers 
giving us the number of arrangements for 
each deck size," Diaconis says. "We 
stared at them and tried to think what on 
earth is going on. There is a pattern but it 
doesn't start until after 24 cards. Before 
24 cards, the numbers are chaotic. After 
24 cards, the pattern repeats every 8 
cards. " 

To explain what kind of pattern they 
saw, Diaconis notes that magicians have 
known for quite some time that both in 
and out shuffles preserve a certain sym- 
metry. The cards are rearranged as sets 
of pairs, each card of a pair being equally 
distant from the center of the deck. For 
example, after an out shuffle the original 
top and bottom cards of the deck remain 
on the top and the bottom. After an in 
shuffle, the original top and bottom cards 
are second from the top and second from 
the bottom. Symmetric pairs also can be 
flipped in place by perfect shuffles. 

It looked like every possible pattern of 
cards occurs subject to the constraint 
that central symmetry must be pre- 
served. In some cases the number of 
patterns of cards would be one-half or 
one-fourth of the total number possible 
with the symmetry constraint. Thus for 
52 cards, he guessed that there would be 
226 x 26! possible arrangements. For 2n 
cards there would be 2" x n! conceiv- 
able arrangements, he guessed. 

But it is one thing to guess at an 
answer to a mathematical problem and it 
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is another thing to prove that your an- 
swer is correct. It took Diaconis and two 
others 6 months to prove that their guess 
was correct. Why did they persevere? 

One thing that motivated Diaconis was 
his chance discovery that a great math- 
ematician, Paul Levy, had worked on a 
variation of the same problem. Shortly 
after Hamilton had done the computer 
calculations Diaconis was browsing in 
the Stanford Library and happened to 
pick up a book of Levy's collected 
works. To his surprise, Diaconis noticed 
that Levy had worked on equations tell- 
ing how many perfect in shuffles or out 
shuffles are necessary before particular 
cards in decks of various sizes come 
back to their original position. He had 
carefully calculated by hand the answers 
for some simple cases but did not solve 
the equations in general. 

"In his book, Levy never mentioned 
why he was doing his work. He just 
presented it as a math problem and never 
tied it to card shuffling," Diaconis says. 
Diaconis was encouraged, however. 
"Often you work on math problems and 
nobody cares about them but you. But 
Levy's such a smart guy and he got so 
many important results that I thought 
there was a good chance that this prob- 
lem is important," he says. 

Diaconis went to Bell Laboratories to 
work with Graham and Kantor, a visitor 
at the labs. Graham and Diaconis had 
previously worked on the card-shuffling 
problem and Graham had solved it for 
the special case of decks of cards num- 
bering a power of 2, such as 4,8, 16, 32, 
or 64. The shuftle group for these decks, 
says Graham, "is very small. Actually, 
all you have to know [for decks of cards 
numbering a power of 21 is the top and 
bottom card of the deck. That enables 
you to know where every other card is. 
In fact, knowing the top and bottom card 
tells you more than you need to know 
to determine where all the other cards 
are." But, Graham explains, these decks 
are truly a special case-there are far 
more possible arrangements for decks of 
other sbes. 

When Diaconis came to Bell Labs with 
Hamilton's computer printout, Graham 
scrutinized the numbers of possible ar- 
rangements. He was struck by the small 
number of arrangements for deck size 
24--the deck size just before the pattern 
starts. Graham said, "That number of 
arrangements is so crazily low that 
something really funny must be going 
on." He consulted with Robert Calder- 
bank and Neil Sloane of Bell Labs who 
looked in a table of groups, computed by 
Sims, to find what groups had that order. 
It turned out that the shuffle group for 24 
cards is a very famous group, called M12 
or the Mathieu group of order 12, that 
was discovered in 1861. It is one of the 
first finite simple groups to be discov- 
ered that is not a member of an infinite 
family. "The fact that M12 occurs in a 
natural way from shuffling cards is just 
amazing, " Diaconis says. "Some gam- 
bler could have discovered it. It was 
constructed by mathematicians but there 
was no way of explaining it." 

Once Graham realized that M12 was 
"just sitting there, " he, Diaconis, and 
Kantor were motivated to see what else 
was going on. "That was when we got 
angry at the problem and decided to 
really grind it out," Diaconis says. Gra- 
ham agrees. "That's when we decided 
the problem was more interesting than 
we suspected," he recalls. 

The next morning, Graham called 
Kantor and asked him if he could solve 
the problem for deck sizes that are a 
multiple of 4. This was the most difficult 
case and Kantor thought about it for a 
month as he drove across the country 
from Bell Labs in New Jersey to his 
home in Oregon. The way he finally 
solved the problem was to realize how 
deck sizes that are a power of 2 differ 
from those that are not a power of 2 and 
why deck size 24 is such an anomaly. "I 
had to find a pattern that did not include 
powers of 2 and did not include 24," 
Kantor says. 

The proof of the theorem giving all the 
shuffle groups, however, relies on a com- 
puter calculation. The proof proceeds by 
induction but at the end it is necessary to 
prove that three different shuffles of 24 
cards can generate all (Yi) 24! possible 
combinations. The easiest way to show 
this, Diaconis says, is to use a computer. 

So in January of this year Diaconis and 
Grhham went to Xerox Parc in Palo Alto. 
Lyle Ramshaw of Xerox Parc wrote the 
computer algorithm and the group stood 
around the computer waiting to see what 
would come out. When the answer they 
wanted appeared, Diaconis recalls, "We 
let out a big whoop. It meant our theo- 
rem was proved." 

The connection between card shuffling 
and groups intrigues John Conway of 
Cambridge University, who is particular- 
ly interested in enormous groups that 
have no apparent ties to anything con- 
crete. As far as anyone knows they are 
only creations of the minds of mathema- 
ticians. But Conway has a hunch that 
some of these groups may actually be 
shuffle groups and he is now trying to 
base a construction of one of the largest 
of these, called the Monster group, on 
card shuffling. 

Diaconis soon gave a talk on card 
shuffling at Massachusetts Institute of 
Technology. To his surprise, quite a 
number of electrical engineers came to 
hear him speak. When he asked why 
they were interested, he learned that 
they need to know about the mathemat- 
ics of card shuffting to interconnect com- 
puters in networks for parallel process- 
ing. In fact, engineers had independently 
invented the results of Graham for out 
shuffles of decks that are powers of 2. 

Tom Leighton of MIT explains that 
computer scientists are well aware of the 
connection between the design of com- 
puter networks for parallel processing 
and card shuffling-they even call the 
networks "shuftle exchange graphs." 
But, for now, computer scientists do not 
need to know the shuffle groups for 
decks that are other than a power of 2. 
Nonetheless, Leighton says, Diaconis' 
work is of at least theoretical interest to 
computer scientists. 

Through all this work, Diaconis could 
not stop thinking about what had moti- 
vated Levy-why had he worked on 
equations that are exactly tied in to the 
card-shuffling problem? Diaconis wrote 
letters to people who had known Levy, 
asking if they had any ideas about where 
those equations came from. Lucien La- 
Cam of the University of California at 
Berkeley and a former student of Levy 
told Diaconis that he recalled Levy 
having written a couple of pages 
in his autobiography about those equa- 
tions. 

Diaconis got a copy of Levy's autobi- 
ography and found the passage LaCam 
referred to. He learned that Levy 
worked on the equations because he was 
fooled by a magician. "In 1901, Levy 
was at a resort and he was fooled by a 
card trick," Diaconis says, "Fifty years 
later he was lying sick in bed and he 
remembered that card trick. He wrote 
out those equations to try and figure out 
why it worked."--GINA KOLATA 
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