
degradation rates by peptidases or to 
differences in affinity for a-MSH or de- 
acetylated a-MSH receptors. Recent 
studies demonstrate that brain pep- 
tidases degrade deacetylated a-MSH 
about ten times as fast as they degrade a- 
MSH (6). More rapid degradation of de- 
acetylated a-MSH cannot, however, to- 
tally explain the differences in behavioral 
activity of the two peptides because de- 
acetylated a-MSH is actually more potent 
than a-MSH in a number of behavioral 
actions. One behavioral action in which 
deacetylated a-MSH is more potent than 
a-MSH is in the ability to block opiate 
analgesia and opiate receptor binding. 
Deacetylated forms of a-MSH or struc- 
turally related ACTH analogs consistent- 
ly block opiate-induced analgesia and 
opiate or 6-endorphin receptor binding, 
whereas the N-acetylated a-MSH is de- 
void of activity (11). It is clear that in this 
case receptor affinity and not peptidase 
sensitivity is likely to be responsible for 
the differences in bioactivity and that the 
N-acetyl group may be an important 
determinant for receptor interaction. 
The data, therefore, indicate that there 
are different structural requirements for 
different behavioral actions of a-MSH, a 
finding that has been demonstrated pre- 
viously (12), and that interactions with 
these different postsynaptic receptors 
could be regulated by acetylation reac- 
tions in the presynaptic opiomelanotro- 
pinergic neuron. It is interesting that 6- 
endorphin also occurs in both acetylated 
and deacetylated forms in the opiomela- 
notropinergic neuron and that acetyla- 
tion of the @-endorphin eliminates its 
potential to bind to the opiate receptor 
and elicit analgesia (3). The acetylation 
of both a-MSH and 6-endorphin appears 
to result from enzymatic mechanisms, 
and recent results indicate that different 
enzymes acetylate each of these peptides 
(13). Furthermore, a-MSH acetylating 
enzymatic activity appears to be induced 
by physiological manipulations which in- 
duce a-MSH synthesis (13). Differential 
regulation of the two acetylating en- 
zymes could alter the ratios of deacety- 
lated and acetylated forms of a-MSH 
and P-endorphin and by doing so change 
both the composition of the secretory 
output of the opiomelanotropinergic neu- 
ron and the resulting postsynaptic ac- 
tions. Such molecular regulatory pro- 
cesses are considerably more complex 
than the mechanism proposed by the 
classical model of the neurosecretory 
cell which releases one neurotransmitter 
or hormone. It is clear, however, that 
independent processing of individual 
neurotransmitters or hormones released 
from one multiple transmitter secretory 
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cell adds another dimension of complex- 
ity and flexibility to intercellular commu- 
nication. A question of importance is 
whether cells secreting multiple chemi- 
cal signals are the exception or rule. 
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Excretion of P-Phenethylamine Is Elevated in 
Humans After Profound Stress 

Abstract. The urinary excretion rate of the endogenous, amphetamine-like sub- 
stance 6-phenethylamine was markedly elevated in human subjects in association 
with an initial parachuting experience. The increases were delayed in most subjects 
and were not correlated with changes in urinary pH or creatinine excretion. The data 
suggest a stress-related role for 6-phenethylamine. 

6-Phenethylamine (PEA), an endoge- 
nous amine that resembles amphetamine 
both structurally and pharmacologically 
(I), has been implicated as an etiological 
factor in paranoid schizophrenia. Pa- 
tients with this disorder excrete large 
amounts of PEA in their urine (2). Stress 
may also play a role in paranoid schizo- 
phrenia, since in some patients it precipi- 
tates psychotic episodes (3). Amphet- 
amines can produce a paranoid state ( 4 ) ,  
and stress can reinstate this psychosis in 
individuals who then are abstinent (5). It 
seems, therefore, that stress may play a 
role in changes in PEA excretion ob- 
served in paranoid schizophrenics. How- 
ever, there has been no evidence that 
stress can alter PEA disposition in any 
species. We now report an elevation in 

the urinary excretion of PEA in humans 
following a parachute jump. 

Our subjects were male and female 
college students 18 to 28 years of age. 
They were admonished to refrain from 
ingesting alcohol or other drugs during 
urine sampling periods. Urine was col- 
lected from each subject during a 24- 
hour control period (2100 to 2100 hours) 
7 to 21 days before the jump and during 
the same 24-hour period encompassing 
the jump. In some subjects urine was 
collected for an additional 18 hours after 
the jump. Collected urine was stored at 
-70°C until being assayed for PEA by 
gas chromatography-mass spectroscopy 
(6). The urine from each micturition was 
assayed separately. 

Stress during the parachuting experi- 
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Fig. 1. Urinary excre- 
tion of PEA (0) and 
creatinine (0) in indi- 
vidual subjects before 
and after parachuting. 
Urinary excretion 
rate was calculated by 
dividing the PEA con- 
tent in urine from a 
particular micturition 
by the time in hours 
since the previous 
micturition. Points 
are graphed at the 
temporal midpoint be- 
tween each pair of 
micturitions. Symbols 
on the extreme left of 
each graph indicate 
mean excretion rates 
for four to seven mic- 
turitions (brackets on 
solid circles indicate 
the range and brack- 
ets on open circles in- 
dicate standard er- 
rors) for a 24-hour 
control period 7 to 21 
days before the jump. 
Vertical dashed lines 
indicate the time of 
the jump. 

ence was defined as an elevation in heart 
rate (7). Since an individual's percep- 
tion of stress and his or her subsequent 
physiological reaction may be altered by 
denial (8), the subjects were adminis- 
tered the Minnesota Multiphasic Person- 
ality Inventory denial scale (8) before the 
jump. 

Figure 1A presents the PEA excretion 
data for three of six subjects (two males, 
A.S. and L.G., and one female, S.K.). 
The rate of urinary excretion of PEA was 
markedly elevated in each subject after 
the jump; in L.G. and S.K. the increase 
did not occur until several hours after the 
jump. The post-jump values exceeded 
the control period means for A.S., L.G., 
and S.K. by factors of 2.9, 5.4, and 2.6, 
respectively. Similarly, in the remaining 
three subjects (two females, R.A. and 
D.G., and one male, J.H.), mean PEA 
excretion rates on control days were 0.43 
(range, 0.19 to 0.76), 0.33 (0.21 to 0.48), 
and 0.36 (0.19 to 0.52) kglhour, whereas 
the maximum rates on the jump day were 
1.66, 0.86, and 0.96 kglhour. Thus, ex- 
cretion rates on the jump day were ap- 
proximately three to four times higher 
than the control rates. In J.H. and D.G. 
these elevations occurred no earlier than 
5 hours following the jump; the increase 
in R.A., however, occurred 1 hour be- 
fore the jump. 

In view of the apparent delay in the 
augmentation of PEA excretion, we add- 
ed three more subjects to the study and 
collected their urine for longer periods. 
PEA excretion rates after the jump were 

elevated by factors of 8.6, 15.8, and 3.0 
in K.W., T.D., and M.R., respectively 
(Fig. 1B). In K.W. and T.D. the in- 
creases were again delayed, occurring no 
earlier than 5.5 hours after the experi- 
ence. Following the large increases the 
rates rapidly declined to low, stable val- 
ues. In M.R., however, there was no 
delay. In fact, as with R.A., the maxi- 
mum increase occurred before the jump. 
There was no statistically significant cor- 
relation between scores on the denial 
test and maximal increases in PEA ex- 
cretion. 

In spite of what may be considered a 
small sample size, these data indicate 
that the elevation (and the delay) in PEA 
excretion is reproducible under the con- 
ditions of the experiment. An important 
exception may have occurred in S.K. In 
this subject the maximum elevation in 
PEA was only slightly greater than the 
maximum that occurred during the con- 
trol period. While this subject may not 
have demonstrated a jump-associated ef- 
fect, it is appropriate to note that the 
control day or the day before it was not 
necessarily without stress. Consequent- 
ly, the relatively large range in S.K.'s 
control PEA excretion rates, like the 
large range in her rates during the jump 
day, may reflect stress-related events. 

The site or sites from which efflux of 
PEA occurs and the mechanisms respon- 
sible for these effects are unknown. PEA 
is a decarboxylation product of the ami- 
no acid phenylalanine and is metabolized 
primarily by monoamine oxidase B 

(MAO-B) to form phenylacetic acid (9). 
The excretion of free PEA per se in 
humans is apparently unaffected by the 
ingestion of PEA-containing foods and is 
independent of normal diurnal variations 
in urinary pH (2, 10). The elevation in 
PEA excretion following stress may re- 
sult in part from an increase in plasma 
phenylalanine or phenethylamine or 
from a decrease in MAO-B activity. 
Stress in animals, at least, has been 
shown to produce a decrease in MA0 
activity in the hypothalamus ( l l ) ,  a brain 
region with a higher PEA content than 
most other central nervous system tis- 
sues (12). Although correlations among 
stress, PEA, and paranoid schizophrenia 
are hypothetical, it is of interest that 
human platelet MA0 activity is reduced 
in paranoid schizophrenics (13). 

The delay in excess excretion of PEA 
until several hours after parachuting is 
even more difficult to account for. Be- 
cause of the stress, changes in blood 
flow to the kidney or in other intrarenal 
processes could occur such that urinary 
excretion of many substances, including 
PEA, is delayed. Substances that nor- 
mally are transferred from the plasma 
to urine might therefore accumulate in 
blood until the effects of stress dissipate. 
The return to normal kidney function 
would lead to elevated excretion of the 
accumulated substances. However, data 
on the effects of parachuting on the rate 
of creatinine excretion (Fig. 1) mitigate 
against an alteration in kidney function 
per se or a renally mediated accumula- 
tion of PEA in plasma. Creatinine is an 
end product of muscle metabolism (14). 
It enters the plasma at a relatively con- 
stant rate and is secreted and reabsorbed 
in the kidneys to such a small extent that 
its excretion is often used clinically as an 
indirect measure of kidney function in 
general and glomerular filtration in par- 
ticular (15). Comparable rates of PEA 
and creatinine excretion, then, would 
support the above contentions. Howev- 
er, our data indicate that the excretion 
rates of PEA are not directly correlated 
with those of creatinine. 

Another possibility is that the delay 
simply represents the normal time re- 
quired for plasma PEA to be transferred 
to the urine. While we have no data on 
this, it should be noted that some of the 
effects of stress may be similar to those 
of the PEA analog amphetamine (3) and 
that amphetamine appears in human 
urine within minutes, even when admin- 
istered orally (16). Since the chemical 
and pharmacological characteristics of 
PEA and amphetamine are similar ( I ) ,  
elevated excretion of PEA several hours 
after the stressful experience is unlikely 
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to represent a normal plasma-urine 
transfer time. 

The most likely explanation for the 
delay is that some stress-related but de- 
layed process occurred in several of our 
subjects some time after the parachuting 
experience. Although the process is un- 
known, the data suggest that stress can 
increase the amount of circulating PEA. 
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