
remains that their oculomotor perform- 
ance can limit their visual abilities. 
These limitations must be taken into 
account when interpreting their visual 
performance. 
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Increased Axonal Proteolysis in Myelin-Deficient Mutant Mice 

Abstract. Protein degradation within retinal ganglion cell axons in vitro is 50 to 
110 percent faster than normal in mutant mice exhibiting dejiciencies of myelin in the 
central nervous system. Proteolysis is increased proximally and distally within 
retinal ganglion cell axons of mice carrying the jimpy mutation or its allele, myelin 
synthesis dejiciency, and is increased distally within those axons of quaking mice. 
The proteolytic defect is axon (neuron)-specific since the rate of protein degradation 
within glial cells is normal. Increased axonal proteolysis does not bear a simple 
relation to hypomyelination since shiverer, another mouse mutant deficient in 
central myelin, displayed normal rates of axonal protein degradation under the same 
conditions. These observations suggest an abnormal axon-glial interaction in mice 
with primary glial defects and raise the possibility that the functioning of histologi- 
cally normal axons (neurons) may be altered in dysmyelinating diseases. 

Biochemical interactions between 
neurons and glia seem to be important in 
normal brain development (1). The inter- 
play between axons and glia during mye- 
linogenesis has been well documented 
(2, 3), although our understanding of 
these interactions at the molecular level 
is limited. In large part, this limitation 
stems from the problem of distinguishing 
biochemical events in neurons from 
those in glia, while preserving the ana- 
tomical relationships between these 
cells. 

A strategy was developed that permits 
proteolysis to be studied specifically 
within the axons of mouse retinal gangli- 
on cells (RGC) and separately within 
neighboring glial cells throughout post- 
natal development (4, 5). After labeling 
RGC proteins in vivo by intravitreal in- 
jection of radioactively labeled amino 
acid, I exploited the ability of the neuron 
to segregate by axoplasmic transport a 
population of labeled proteins that is 
specifically neuronal in origin. Glia in the 
optic pathway were selectively labeled in 
vitro by taking advantage of the negligi- 
ble protein synthetic capacity of axons 

(6). Proteolysis in RGC axons or glial 
elements of the primary optic pathway 
was studied in vitro in the excised, but 
intact, optic nerves to preserve anatomic 
relationships. The rates of protein degra- 
dation measured under these conditions 
approximate those estimated in vivo (4). 

This approach was applied to mice 
with genetic disorders that profoundly 
impair myelin formation but apparently 
spare neurons and their processes (7- 
11). In two mutant strains, jimpy (jp and 
jpmsd) (7-9) and quaking (qk) (a), protein 
degradation at physiological pH was ab- 
normally elevated within RGC axons but 
not in adjacent glial cells. Since the pri- 
mary genetic defect in jp and qk mice is 
believed to reside in glial cells (12), the 
observation that neuronal proteolysis is 
increased suggests that axon-glial inter- 
actions, and possibly neuronal function, 
are abnormal in these mice. 

Mice, originally from Jackson Labora- 
tories (Bar Harbor), were bred in con- 
trolled-environment rooms on a 12-hour 
day-night cycle. The jp mutation, a sex- 
linked recessive trait (7, 8), was bred on 
a C57BLI6J-CBA hybrid background. 
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This strain also carried the mutation tab- 
by (Ta), a marker gene which allows 
hemizygous animals to be identified at 
birth (10). Myelin synthesis deficiency 
tipm"), an allele of jp which is a milder 
phenotypic expression of the defect (9),  
and qk, an independent autosomal muta- 
tion (8), were carried on the C57BLl6J- 
C3H background. Shiverer (shi), a sec- 
ond autosomal recessive mutation (II) ,  
was obtained and bred on a nonspecific 
genetic background. The ages chosen for 
analysis represented the stage when sei- 
zures, tremor, and ataxia were most 
prominent. 

Differences in the rate of protein deg- 
radation in RGC axons were observed in 
control mice of different genetic back- 
ground (13). The rate in optic nerves 
from C57BLl6J-C3H mice was compara- 
ble to that previously reported in normal 
C57BLl6J mice (4) and significantly high- 
er [t(39) = 2.87, P < .01] than the rate in 
C57BLI6J-CBA hybrid mice and in shi 

mice on a heterogeneous genetic back- 
ground (Table 1). These differences are 
not related to  age, since stable adult 
rates are obtained by the third postnatal 
week (14). 

Protein degradation in RGC axons 
proceeded twice as  fast in jp and jpmsd 
mice as in control mice (Table 1). This 
elevated rate was observed proximally 
(optic nerve) and, to a lesser extent, 
distally (optic tract) within RGC axons. 
In qk mice, protein degradation was in- 
creased but only in distal axonal regions 
[t(24) = 3.77, P < .001]. By contrast, 
the rate of protein degradation in RGC 
axons from shi mice was normal. Sec- 
ondary nutritional effects of the muta- 
tions did not seem to influence these 
protein degradative rates, since runted 
control mice (C57BLI6J-CBA and 
C57BL16J-C3H) exhibited normal rates 
of protein degradation. The Ta marker 
for the jp mutation had no apparent 
effect, since proteolytic rates were com- 

parably elevated In jp mice with and 
without the l u  phenotype. 

Since calcium stimulates the rate of 
protem degradatlori in KGC axons (4), 
the possibility that enhanced access of 
calciurn to  the axonal proteolytic system 
might account for the higher degradative 
rates in hypomyelinated axons was ex- 
amined. Adding calclum ionophore 
(A23187) to the incubating medium or  
freeze-thawing the optic nerves or tracts 
several times before protein degradation 
analysis increases the influx of exoge- 
nous calcium into the axon (15) and in 
preliminary experiments did not disrupt 
the cellular specificity of the degradation 
measurement. Either procedure in- 
creased protein degradation approxi- 
mately twofold an o p t x  tract and fivefold 
in optic nerve, although the effects were 
not additive When freeze-thawed optic 
nerves or optic tracts from jp and qk 
mutants were exposed to calcium iono- 
phore (10 pgiml), the axonal proteolytic 

Table 1. Protein degradation in RGC axons of abnormal and myelin-deficient mutant mice. The jp and jpn'" mice were analyzed at 3 to 4 weeks of 
age, and qk and shi at 3 to 4 months. Protein degradation in RGC axons was measured as previously described (4) with several modifications. 
Mice were anesthetized with Avertin (4) ,  and 0.25 ~1 of L-[3H]proline (15 pCi) in phosphate-buffered saline was injected into the vitreous of each 
eye through the use of a glass micropipette apparatus. The qk, shi, and jpm""mice were decapitated 5 days, and jp mice 4 days, after the proline in- 
jection. Each optic nerve or optic tract was placed in 0.35 ml of Hepes buffer [25 mM Hepes (pH 7.4), 6 rriM KCI. I10 mM NaCI, 4 mM CaCI,, 
choramphenicol 0.3 mglml, 9.5 mM cycloheximide, 6.5 mM glucose]. One of each pair of nerves or tracts, serving as a background control 
sample, was immediately homogenized and mixed with 0.125 ml of 50 percent trichloroacetic acid (TCA). The other paired specimen was 
incubated at 37'C for 1.5 hours and then similarly homogenized. The radioactivity (dislmin) in the TCA-soluble and 'TCA-insoluble fractions of 
each sample was then determined. The rate of protein degradation was operationally defined as the fraction of labeled free amino acid and TCA- 
soluble peptides released from protein per unit time at 37'C. This fraction was calculated as the ratio of TCA-soluble radioactivity to total 
radioactivity. The rate of degradation was expressed as that fraction after 1 hour of incubation at 37°C minus "backgroundM-the corresponding 
value obtained from the paired tissue specimen that was homogenized immediately after dissection-multiplied by 100. Each value in the table is 
the mean t standard error of the mean for the number of mice given in parentheses. Mutant and control values were compared by t-tests for 
independent samples. 

... 

Rate of axonal protein degradation 
~ -. -. . - - .. -. 

Optic nerve region Optic tract region 
Genetic -- . 

background Mutation Percent- Percent- 
Mutant Control age of Mutant Control age of 

control control 

C57BLI6J-CBA Ta jply 2.77 t 0.29 (1 1) 1.39 t 0.14 (1 1)  1993: 5.39 t 0.59 (7) 3.63 -+ 0.27 (10) 148* 
C57BLI6J-C3H jpm""y 3.26 -+ 0.44 (10) 1.92 k 0.18 (15) 170: 4.02 t 0.36 (8) 2.79 2 0.16 (8) 145t 
C57BLl6J-C3H qklqk 2.82 t 0.27 (15) 2.43 t 0.23 (15) 116 5.27 ? 0.52 (12) 3.19 +. 0.25 (14) 165$ 
Mixed shilshi 1 .27t0.24(6)  1.27*0.08(6) 100 2.30 * 0.31 (5) 2.24 + 0.31 (6) 103 

* P < 0 1 .  t P < . 0 0 5  $ P < . 0 0 1 .  

Table 2. Protein degradation in retinas and optic nerve glia of normal and myelin-deficient mice. For isolated retinas, the procedure was the same 
as that described in Table I .  To label glial proteins, optic nerves from an uninjected mouse were incubated for 50 minutes at 3TC in Hepes buffer 
(with cycloheximide and chloramphenicol omitted) containing L-[3H]leucine (3 mCi in 0.4 ml). Free leucine associated with the nerves after the 
labeling procedure was reduced by three successive 2-minute incubations of the nerves in unlabeled Hepes buffer (containing cycloheximide and 
chloramphenicol) (25). The rate of degradation at pH 7.4, linear for more than 1.5 hours, was measured as described for axonal proteins (Table 1). 

Rate of protein degradation 

Retinas Optic nerve glia 
Genetic -- - 

background Mutation Percent- Percent- 
Mutant Control age of Mutant Control age of 

control control 

C57BLI6J-CBA Ta jply 1.55 t 0.21 (3) 1.73 t 0.13 (4)* 90 8.05 t 0.56 (5) 7.61 t 0.36 (9) 106 
C57BLl6J-C3H jpm"ly 0.89 t 0.10 (7) 0.86 t 0.08 (8) 103 8.20 t 0.53 (8) 6.80 t 0.43 (10) 121 
C57BLl6J-C3H qklqk 0.63 t 0.11 (8) 0.71 t 0.1 1 (8) 96 5.96 t 0.42 (10) 5.42 1 0.18 (19) 110 
Mixed shilshi 1.30 i 0.08 (5) 1.04 t 0.13 (4) 126 5.33 + 0.76 (4) 5.82 ? 0.44 (7) 92 

- - -  

"P < .001, C57BLi6J-CBA controls versus C57BLi6J-C3H controls. 
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rates differed from control rates by ap- 
proximately the same margin as in the 
earlier experiments [versus control: 
jpm" nerves, 140 percent, t(18) = 3.16, 
P < .01; jpmSd tracts, 145 percent, 
t(18) = 2.88, P < .01; qk tracts 209 per- 
cent, t(10) = 4.69, P < .001]. Increased 
penetration of exogenous calcium into 
axons does not seem to be the cause of 
the axonal proteolytic abnormalities. 

The retina, containing neurons but no 
central nervous system myelin (16), is 
histologically normal in jp and qk mice 
(17). The rate of protein degradation in 
isolated retina from each of these mu- 
tants is normal (Table 2). However, the 
rate of retinal protein degradation in 
C57BLI6J-CBA controls was twice that 
in C57BL16J-C3H control animals (Table 
2). This difference in proteolytic rates 
was not related to age, since adult rates 
of protein degradation are attained by 
the third postnatal week (14). 

By modifying the protein-labeling pro- 
cedure, protein degradation within optic 
nerve glial cells could be measured in 
vitro. Incorporation of label into proteins 
proceeded at a linear rate for more than 1 
hour when optic nerve or optic tract 
segments were incubated in vitro with L- 

[3Hlleucine. Since axonal protein syn- 
thesis is negligible under these condi- 
tions (6), the 3H-labeled proteins are 
derived from nonneuronal elements of 
the optic nerve (18). When the rates of 
protein degradation in optic nerve glia of 
jp, jpmsd, and qk were measured, no 
differences from unaffected controls 
were observed (Table 2). 

These results suggest that protein deg- 
radation can be studied selectively in 
neurons (axons) and in glial cells of the 
optic pathway while largely preserving 
their normal anatomic relationships. The 
proteolytic rates in axons and in glial 
elements vary independently under dif- 
ferent physiological conditions (5). This 
experimental approach has made it pos- 
sible to detect abnormalities of axonal 
proteolysis in myelin-deficient mutant 
mice not revealed when conventional 
cell-free techniques for measuring pro- 
teolytic activity are used (14). 

The alleles jp and jpmSd exhibited simi- 
lar axonal proteolytic defects despite 
substantial quantitative differences in the 
severity of the disorder, including the 
dysmyelination (9). Quaking mice, af- 
fected at another genetic locus, dis- 
played a different abnormal pattern, 
while mice carrying a third independent 
mutation, shi, exhibited normal axonal 
protein degradation at physiological pH. 

The neuronal proteolytic defect in these 
mutants, therefore, does not bear a sim- 
ple relationship to the extent of hypo- 
myelination. It is possible, however, that 
increased axonal proteolysis occurs in 
response to some other aspect of defec- 
tive glial metabolism. Alternatively, 
since proteolytic activity normally de- 
creases during postnatal development 
(14, 19), the increase in axonal proteoly- 
sis in jp and qk may reflect an arrest of 
axonal development that precedes or ac- 
companies the glial developmental ar- 
rest. Abnormal proteolysis would then 
represent an immaturity of the axon rath- 
er than a reactive pathological state. 
Indeed, central nervous axons from jp 
mice do not exhibit the normal increase 
in diameter associated with the myelina- 
tion (20). Elevated activity of calcium- 
activated neutral proteases (15, 21), 
known to be present in RGC axons (4, 
14), might be involved in this failure of 
axonal enlargement, especially in view 
of their particular affinity for axonal 
structural proteins (15). 

If more widespread in the brain, en- 
hanced axonal proteolytic activity would 
provide a possible basis for certain re- 
ported neuronal abnormalities in jp and 
qk mice including subtle axonal degener- 
ative or dystrophic changes (22). Calci- 
um-activated neutral proteinase might 
play a role since it is believed to mediate 
early morphological and biochemical 
events during Wallerian degeneration 
(15). However, increased activity of 
acidic proteinase has been observed in 
RGC axons from jp, qk, and shi mice (14) 
and may also contribute to these patho- 
logical changes. 

Recent findings that myelination and 
demyelination are associated with phys- 
iological and morphological alterations 
of the axon (23), suggest that glial and 
axonal function are interdependent. The 
proteolytic abnormalities in morphologi- 
cally normal RGC axons from jp and qk 
mice may be possible clues to the bio- 
chemical nature of such glia-axon inter- 
actions. The additional implication that 
neuronal dysfunction may underlie cer- 
tain neurologic deficits in these myelin 
disorders may be relevant to the patho- 
biology of other dysmyelinating diseases 
(24). 
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