
acquire a computer system, an operating
system, and a general-purpose DBMS.
The bank's data processing department
then provides the application software.
The relationship of these components is
illustrated in Fig. 1.

Computer systems are increasingly
used to aid in the management of infor-
mation, and as a result, new kinds of
data-oriented software and hardware are
needed to enhance the ability of the
computer to carry out this task. This
article reviews the rapidly evolving field
of database systems-computer systems
devoted to the management of relative-
ly persistent data. The computer soft-
ware employed in a database system is
called a database management system
(DBMS).

There are more than 15,000 database
systems installed in the United States,
and these systems are being directly

Database Systems
Michael W. Blasgen

used by hundreds of thousands of peo-
ple. Indirectly, almost every citizen uses
one or more of these systems, since it is
not possible today to write a check, use a
credit card, make an airline reservation,
or pay a bill without causing an action in
a database.

Most database systems are oriented
toward the modification and retrieval of
formatted data-the kind of data associ-
ated with the management of inven-
tories, accounts payable and receivable,
personnel information, and other admin-
istrative applications. Some systems
(called information retrieval systems) are
oriented toward the search and retrieval
(not update) of unformatted text-a sci-
entific abstracts service, for example.
There are now approximately 1000 dif-
ferent information retrieval services that
can be tapped by subscribers, up from
400 two years ago (I).

In addition to these "mundane" data-
base systems, a small but growing num-
ber of database systems are employed
for more exotic applications such as (i)
managing the engineering drawings for a
new commercial airliner and using the
drawing information to directly drive nu-
merically controlled machine tools; (ii)
storing the three-dimensional structures
of organic compounds and their pharma-
cological properties so that proposed
drugs can be rapidly compared with oth-
er compounds and their properties more
accurately predicted; and (iii) storing and
manipulating geographic information

SCIENCE, VOL. 215, 12 FEBRUARY 1982

such as maps, digitized photographs, and
Landsat images, which then permit im-
age enhancement and pattern recogni-
tion in applications such as oil explora-
tion and land use planning. But it is not
necessary to appeal to these advanced
applications to understand the technical
challenges of database systems. It is
sufficient to consider a relatively simple
example.

A Banking Example

To understand the objectives of a data-
base system, let us consider an example
application in a multibranch bank. The
database will contain four files of infor-
mation on:

1) Accounts, including account num-
ber, owner, and balance for each ac-
count.

The initial development of the applica-
tion software is a large undertaking, re-
quiring the efforts of many programmers
over a period of years. Furthermore, this
software will require constant mainte-
nance, either because of changes in the
underlying hardware and operating sys-
tem or because of changes in the bank's
requirements. The bank has a major in-
terest in reducing both the initial cost of
the application software and the cost of
its maintenance. T o facilitate this, the
DBMS should serve both to insulate its
users from the idiosyncrasies of the
hardware and system software and to
provide the application programmer with
a simpler and easier to use view of data.

The DBMS must also help maintain
the integrity of the data. As more and
more of its critical data are put in the
computer, the bank becomes more vul-
nerable to computer-related failures. The
DBMS and the application programs
must ensure that failures d o not affect
the correctness or consistency of the
database. The DBMS must also help in
maintaining the security of the data by
ensuring that only authorized "reads" or
"writes" take place.

Summary. Database systems, computer systems that are principally devoted to the
management of large amounts of data, are becoming more and more important to the
operation of many enterprises. This article surveys the technology of database
software and hardware, describing some of the principal issues related to the user's
view of data, sharing, concurrent access, security, and integrity.

2) Teller stations, including cash posi-
tion and teller identification for each
teller station.

3) Branches, including cash on hand
and summary information for each
branch.

4) Activities, including transaction
type (such as withdrawal), account num-
ber, date and time, and amount involved
for each transaction.

Bank employees and the bank custom-
ers must be able to inquire about the
status of the database (for instance, the
balance of an account or the date of the
last deposit) as well as modify its con-
tents (deposit and withdraw funds, han-
dle a check). Periodic reports (such as
monthly statements) must also be ob-
tained. The system must also be pre-
pared to go far beyond these simple
illustrative requirements.

To support these needs, the bank will

This database system must also be
prepared for new applications such as
credit card authorization, telephone bill
paying, or cashless retailing. These ap-
plications must be incorporated by using
the same database. This point may seem
obvious-since the database is already
there and it contains most, if not all, the
information to support these new appli-
cations, why not use it?-but it took
people many years to become aware of
the necessity of doing this. Without data-
base technology to ease the sharing of
data between applications, each applica-
tion typically had its own copy of the
data. But as the data changed, all the
copies had to be updated. This mainte-
nance became such a headache that to-
day no data processing department will

The author is manager of advanced systems tech-
nology, IBM Federal Systems Division, Bethesda,
Maryland 20817.

0036-8075182102 12-0869$01.00/0 Copyright 0 1982 AAAS 869

allow this kind o f unnecessary duplica-
tion.

The system must do its work within
hardware budgets and within prescribed
time limits. For example, on-line opera-
tions must be carried out within a 5-
second response time, and accounts
must be reconciled overnight. These per-
formance requirements can be quite
onerous. Consider just the throughput
requirements: a bank might have 200,000
active accounts, with 50 to 100 transac-
tions per account each month. Using the
larger figure, this means approximately
20 million transactions per month, or 20
transactions per second on the average.
The peak demand will probably reach
100 transactions per second. I f these
transactions are performed on-line, then
each transaction might require the exe-
cution of 100,000 computer instructions
as well as four or five accesses to disk
storage. A rate of 100 transactions per
second thus can demand the execution of
10 million instructions per second and
500 disk accesses per second, requiring a
very large computer and 10 to 20 disks.

Objectives of a Database

Management System

From this example it should be clear
that the objective o f the DBMS is to help
the bank control its assets at reasonable
cost by providing:

1) Data independence: the application
programs are protected from changes in
the hardware, operating system, data
storage devices, and so on.

2) Data sharing: all the applications
use one copy of the database.

3) Security: only authorized individ-
uals, terminals, and programs can per-
form specific functions.

4) Data integrity: hardware and soft-
ware defects will not make the database
inconsistent.

5) Ease o f use: the view o f data pro-
vided to the programmers and other us-
ers is clear, straightforward, and easy to
use; the DBMS is packaged in such a
way that the system programmers find it
easy to install and maintain.

6) Performance: response time and
throughput requirements are met.

Technology Trends

There has been rapid growth in the use
of DBMS's in the past few years. In part
this is because people now recognize
that information is a critical asset and
must be handled as carefully as a more
traditional asset such as money. But

870

technological trends have also fostered
this growth by lowering the cost of the
underlying hardware. Certain economies
of scale (in particular, large-scale inte-
grated circuits) have allowed the com-
puter industry to sell more computers at
much lower prices, taking advantage o f a
remarkable elasticity o f demand for com-
puting. More and cheaper computers
mean more opportunity for DBMS's,
which in turn has meant more suppliers
of these systems. It is estimated (2) that
50 companies market 54 different DBMS
packages and that the sale o f DBMS
software generates $150 million per year
in revenues.

The personal computer revolution
may also ensure a wider use of data-
bases. The personal computer itself will
have only a limited database capability,
but to be truly useful it must have access
to a large central database. At first this
demand may be satisfied by access to
stock market information (Dow Jones)
and the wire services (New York Times),
but later users will want direct access to
bank accounts, reservation systems, and
order entry systems. This access will
force even greater emphasis on ease o f
use and security in databases.

Database Management System Services

A DBMS offers a number of services,
including:

1) User view of data: describing the
way data appear to the user of the
DBMS, a view that is usually quite dif-
ferent from the way data are stored in the
computer (the DBMS maps from one to
the other).

2) Data language: allowing the user to
retrieve, update, insert, and delete data
from the database.

3) Transaction management: provid-
ing execution control over the database,
determining the level o f concurrent ac-
cess, the recovery options, and specify-
ing the "atomicity" of database opera-
tions.

In the sections that follow these three
areas are discussed and some of the
technical issues that arise are reviewed.

User Views and Data Languages

Database technology has evolved to
the point where there are basically two
approaches to data representation and
manipulation: a network (or hierarchical)
view and a relational view.

Nefwovk view. This view (3) organizes
the data records into several record
types. In our banking example, accounts

is a record type, as is activities. Records
having the same record type share the
same form; thus an accounts record al-
ways consists of an account number
field, an account owner field, and so on.
I f a record o f one record type is related
to a record of another record type, this
fact is explicitly represented by a con-
nection from the first record to the sec-
ond. Thus the fact that a recent with-
drawal (in the activities record type)
involves a particular account (in ac-
counts) i s represented as a connection
from the accounts record to the activities
record. The accounts-activities connec-
tion is often called a parent-child or an
owner-member relationship. An example
of such a network organization is shown
in Fig. 2A. The parent-child relationship
can be extended further: parents can
have parents, children can have chil-
dren. In the bank, an account may be-
long to a branch, in which case the
general diagram is as shown in Fig .
2B.

The network data structure is well
suited to represent 1 : N relationships be-
tween parents and children, as for exam-
ple i f an activities record can involve
only one accounts record, and thus one
account is related to N activities. The
M : N relationships-where, for example,
an activity record can describe a transfer
between two accounts-are more diffi-
cult. The usual solution is to define a
third record type that relates the other
two and that may be empty or may
contain data pertaining to both the origi-
nal record types.

The data language for a network view
is navigational in nature; the language
permits the user to explicitly traverse the
connections, examining the records as
he goes. Typical operations involved in
printing a monthly statement for account
23 are:

POSITION ON ACCOUNTS RECORD
FOR ACCOUNT 23
MOVE TO FIRST CHILD
GET NEXT CHILD WITH SAME
PARENT

At all times the user (usually a program-
mer) is aware of a position in the data-
base. In our example the programmer
must be aware that after the execution o f
these three commands he i s positioned
on the second activities record under
account 23. This position can be used to
extract information in the record, to
modify or delete the record, or to insert a
new record immediately before or after
the record.

Relational view. This view evolved in
reaction to the apparent complexity of
the network view. In 1970, Codd (4)

SCIENCE, VOL. 215

argued that database systems would be
both simpler and more rigorous if the
data were organized into units modeled
after mathematical relations and the data
language had the power of the first-order
predicate calculus. The relational view
has received increasing attention in the
years since Codd's paper.

A relational database consists of a
number of tables, each representing a
relation and each consisting of some
number of rows and columns. There are
no connections between data items, and
the order of the rows is not significant.
Instead, all information that one item is
related to another must be represented
by data values. Figure 3 shows tables
corresponding to our activities and ac-
counts data. The fact that account 23 is
the "parent" of activity 12 is represent-
ed not by a connection, but the common
account value

Because of its mathematical founda-
tion in the predicate calculus, a relational
data language is a high-level, set-orient-
ed, nonnavigational language. In SQL,
the data language of SQLiDS (5, 6), the
bank statement of the previous section is
generated by

SELECT DATE, ACTION, AMOUNT
FROM ACTIVITIES
WHERE ACCTNO = 23

A relational data language must sup-
port the "join" operator that combines
information from two or more tables by
relating rows that have the same value in
specified columns (this is analogous to
traversing the connections in a network).
In SQL, to obtain information about the
account that was involved in the transac-
tion with activity number 10, the tables
are tied together with the predicate
ACCTNO = NUMBER.

SELECT NAME, BALANCE, ACTION,
AMOUNT, DATE
FROM ACCOUNTS, ACTIVITIES
WHERE ACCTNO = NUMBER
AND ACTIVITYNO = 10

SQL supports set-oriented database
modifications as well. All activities asso-
ciated with account 23 can be removed
by saying

DELETE ACTIVITIES
WHERE ACCTNO = 23

A relational data language like SQL can
be used as part of a computer program,
or it can be used directly by a nonpro-
gramming user. The direct support of ad
hoc query is a very useful feature in a
DBMS. Without support for query, if a
manager wanted to know, say, how
many accounts had a balance of $1000
and had no activity in the current month,
he would have to negotiate with a pro-

Application kri \are
Operating system I 1

Computer hardware I'
Fig. 1. Relationship of the software compo-
nents.

grammer and the report would be deliv-
ered days or weeks later. If the DBMS
has support for ad hoc query, the manag-
er can obtain the answer directly.

Supporting the Data Language

A DBMS contains a component that is
responsible for access path selection,
that is, producing a plan for the execu-
tion of the statements. If the DBMS
supports a navigational language, the ac-
cess path selection component is quite
trivial, because the user has already stat-
ed what paths are to be followed. In a
relational DBMS, however, the access
path selection routines may be quite
complex since the language statements
only specify what is to be done, and not
how to do it. The job of the access path
selection routine, or optimizer, is then to
find the best way to carry out the state-
ments.

For a specific query, the optimizer is
capable of generating many different
plans. In the relational database manage-
ment system SQLIDS, a join query that
finds (using our banking example) all the
accounts that received a deposit and

Fig. 2. Network ex-
amples: (A) two-level
and (B) three-level.

have a high balance can, depending on
the tables, generate 64 different plans.
To see how this process takes place,
consider a join between the account and
activities tables based on equal account
numbers.

The simple join method scans one ta-
ble (the outer table) and for each row,
say t , in the outer table, scans the second
(or inner) table to find all the rows whose
account numbers are the same as the
account number in t . This method touch-
es every record in the outer table once,
and every record in the inner table once
for each row in the outer table. Thus if
there are N rows in the outer table and M
in the inner, the number of rows read by
the simple join method is N + NM. This
method is always feasible.

If both tables are sorted by account
number we can use a merge join which
operates in the same way as the simple
join, but because of the sorting, it avoids
unnecessary references to rows in the
inner table. As a result, the merge join
reads only N + M rows. This method is
feasible only for sorted tables.

A final observation is that any table of
N rows can be sorted with a number of
reads proportional to N log N (7).

Thus the optimizer can use the follow-
ing decision procedure. If the tables are
sorted, use a merge join. Otherwise com-
pare the estimated costs of a simple join
and a sortimerge join (that is, first sort
the tables, then perform a merge join)
and choose the plan that has the lowest
estimated cost.

This example decision procedure,
which is itself a great simplification of
the procedures actually implemented in a
DBMS like SQLIDS, can make enor-
mous improvements in performance. If
the tables are large and unsorted, plung-
ing ahead with a simple join would be a
serious mistake; with 10,000 activities
and 500 accounts, a sortimerge join can
be 100 times faster than a simple join.

Specif ic

Accounts [=I

Act iv i t ies Deposit

General

12 FEBRUARY 1982

Transaction Management

Quite unrelated to the network versus
relational debate there are a number of
other issues. Consider a transaction that
transfers money from your savings ac-
count to your checking account. This
transaction will be expressed as a se.
quence of statements that decreases the
balance in one account, increases the
balance in another, and inserts some
activities records. What happens if the
computer fails in the middle of the exe-
cution of this sequence? It would be
undesirable for the transaction to be left
half done-the savings debited, for ex-
ample, but the checking unchanged. The
bank would have many unhappy custom-
ers if this happened often.

Instead, what we want is the ability to
treat a sequence of actions as a single,
atomic action-in the face of various
failures, the action is either completed in
its entirety or not done at all. Further, if
an agent outside the DBMS has been
informed that an action is completed,
then that action must "stick" (stay com-
pleted) in the database in the face of
subsequent failures.

A DBMS with these characteristics is
said to be failure resilient. Failure resil-
ience is provided by DBMS software
that keeps track of the progress of each
atomic transaction. As the transaction
modifies the database, the DBMS logs
the changes onto a storage device that
will persist through a failure. If the com-
puter fails, then when the system is
restarted the log is examined to deter-
mine what recovery must be done-the
DBMS must undo transactions that were
in progress at the time of failure (and
possibly restart them) and must redo
transactions that were completed prior
to the failure but that for any reason did
not stick.

In addition to recovery, transaction
management may be concerned with
concurrency. The simplest execution
model of a DBMS is one in which re-
quests for service are queued up behind
a single server that satisfies the requests
one at a time. Some DBMS's work this
way, but others provide multiple servers
so that several transactions are in execu-
tion concurrently. Concurrent execution
is certainly desirable when the comput-
ing system is made up of multiple proces-
sors, and it is also desirable in a single
processor to improve response time and
use the relatively long processor waits
associated with disk reads and writes.

Accounts
Number Name Balance

39 Will 40.15

10 39 Dep 20.00 4/15

23 With 100.00 4/16

Activities

5 23 Dep 5.00 4/10

Fig. 3. A relational database.

Consider two concurrent executions
of the transaction that transfers money
between accounts, and suppose the two
transactions are interlaced so that the
first transaction debits the savings ac-
count (say from $300 to $200) and then,
before the first transaction proceeds, the
second transaction is executed so that
the same account is debited again (say
from $200 to $150), the checking account
credited, and the transaction completed.
Now suppose a failure occurs. At re-
start, the recovery logic is going to dis-
cover that the first transaction was in-
complete at the failure and undo the
actions, thereby placing the old value of
$300 back into the savings account. This
scenario, if allowed, has just cost the
bank $50. '

To avoid this, a transaction must lock
data that are to be modified and keep the
data locked until the transaction is com-
plete. Another transaction attempting to
lock an already locked data item will be
delayed until the first transaction is com-
plete. It turns out (8) that appropriate
locking protocols can allow a large de-
gree of concurrent execution while pro-
viding database changes equivalent to
running the transactions serially, one af-
ter the other. In other words, even
though transactions are running concur-
rently on shared data, they are in fact
logically isolated from one another.

Action Amount Activityno

Future Trends

Date Acctno

Currently available commercial
DBMS's contain many of the features-
optimization, transaction management,
and concurrency control-that have
been outlined in this article. In the area
of semantics, Codd (9) has extended the
relational model, and Chen (10) has de-
veloped an information modeling con-
cept called the entity relationship ap-
proach. Workers in artificial intelligence

are making use of specialized knowledge
about the data domain in order to im-
prove the utility of database systems.

In the systems area, further progress is
being made in failure resilience and in
concurrency control. The ultimate in
failure resilience is a system that permits
continuous operation, so that the data-
base is always available. Much research
is being done on distributed systems (11)
consisting of a number of computers
interconnected with communication
links.

Tempering all this technology is the
knowledge that databases can be used to
undermine privacy. Computerized data-
base systems are not qualitatively differ-
ent from the manual systems that pre-
ceded them; the concern is that these
new systems make it feasible to record
more detail in a centralized data bank
that provides for easier retrieval. For
this reason, research on secure DBMS's
continues (12).

Conclusions

The trend toward greater use of data-
base systems will continue. Both rela-
tional and network systems will be
found, with network systems being em-
ployed in applications that are well struc-
tured and where efficiency is critical, and
relational ones having an advantage in
evolving environments where adaptabil-
ity and ease of change are of primary
concern. Research can be expected to
resolve a number of outstanding issues in
multicomputer distributed systems, in
information representation, and in fail-
ure resilience. Future database systems
will become even more usable, more
adaptable, and more widespread.

References

1. Wall Street Journal, 10 December 1981, p. 1.
2. P. Krass and H. Weiner. Datamation. October

1981, pp. 153-170.
3. Report of the CODASYL Data Base Task

Group, Association for Computing Machinery,
New York, April 1971.

4. E. F. Codd. Commun. ACM 13. 377 (June
1970).

5. IBM Corporation, SQLIData System for VSE,
G320-6590 (IBM, White Plains, N.Y.).

6. M. W. Blasgen et al., Z B n l Syst. J . 20 (No. I), 41
(1981).

7. D. E. Knuth, Art of Computer Programming,
vol. 3, Sorting and Searching (Addison-Wesley,
Reading, Mass., 1973).

8. J. N. Gray, Comput. Sci. 60, 393 (spring 1978).
9. E. F. Codd, ACM Trans. Database Syst. 4, 397

(December 1979).
10. P. Chen, ibid. 1, 9 (March 1976).
11. I. W. Dreffen and F. Poole, Eds., Distributed

Databases, an Advanced Course (Cambridge
Univ. Press, New York, 1980).

12. E. B. Fernandez, R. C. Summers, C. Wood,
Database Securiry and integrity (Addison-Wes-
ley, Reading, Mass., 1981).

SCIENCE, VOL. 215

