
great deal of the complexity of current
programs results from the lack of strong
algebraic properties relating the primi-
tive functions of the programming lan-
guage. He sees a need for "program
forming operations" with such proper-
ties, whose domains are themselves pro-
grams. With these, a rigorous approach
might be found for defining the charac-
teristics of new programs built from
combinations of existing ones. Backus
observes that a principal barrier to de-
signing languages with such strong prop-
erties is the von Neumann architecture
of most existing computers. He asserts
that the detailed assignment and manipu-
lation of storage which is required for
each program make it difficult to define
useful program-forming operations. The
particular choices in managing storage
for each of the programs to be composed
would probably be inconsistent.

A set of operations for composing new
programs from existing ones could have
profound implications for hardware de-
sign. The hardware instructions would
directly implement the rules for compos-
ing programs. Further, proposed func-
tional programming approaches offer the
possibility of better determining which
tasks may proceed in parallel. This
would allow better use of advances in
very large scale integration, which make
high degrees of multiprocessing most

cost-effective. While this work is still in
an early stage, it is likely to lead to one of
the most significant advances in comput-
er science in the 1980's.

Conclusions

Since active research in the software
engineering area was begun in the late
1960's, much has been accomplished.
Given stable requirements, it will be
largely a matter of skilled effort and
discipline to produce a predictable and
reliable result. However, as indicated by
the number of different and still unprov-
en approaches to new programming
methodology, this field is still very
young. Thus it is likely that a decade
hence the techniques in use today will be
considered ill-structured and difficult to
maintain. Consequently, because of the
cumulative aspect of programming,
which is economically rather than tech-
nically motivated, we seem destined to
have an environment of the new coexist-
ing with the old and the very old. It is
fashionable for the practitioners of the
contemporary art to criticize the igno-
rance and lack of discipline of their
predecessors. It would be more fruitful
to recognize that the new must coexist
with and enhance the old. Successful
techniques will be those which preserve

The UNIX Operating System:
A Model for Software Design

Brian W. Kernighan and Samuel P. Morgan

In the narrowest sense, UNIX
time-sharing operating system, a

is a
pro-

gtam that controls the resources of a
computer and allocates them among us-
ers. It permits programs to be run ac-
cording to some scheduling policy, con-
trols the peripheral devices (disks, tapes,
printers, and the like) connected to the
machine, and manages the long-term
storage of information.

The authors are members of the Computing Sci-
ence Research Center, Bell Laboratories, Murray
Hill, New Jersey 07974.

SCIENCE, VOL. 215, 12 FEBRUARY 1982

Time sharing implies (i) an environ-
ment in which users access the system
from terminals and (ii) a scheduling rule
which switches rapidly among active us-
ers, to give each a share of the processor
in turn. Time sharing makes it possible
for people to interact with programs as
they execute them; by contrast, "batch
processing" implies a regimen in which
users have no such interaction with pro-
grams.

Traditionally, operating systems have
been large, complicated programs re-

a maximum of the value of that which
has already been achieved. The chal-
lenge is to become masters of the evolu-
tion.

References and Notes

B. W. Boehm, in Research Directions in Soft-
ware Technology, P. Wegner, Ed. (MIT Press,
Cambridge. Mass., 1979), p. 44.
C. A. R. Hoare, Commun. ACM 24 (No. 2), 75
(1981).
C. J . Date, lnrroduction to Database Systems
(Addison-Wesley, Reading, Mass., ed. 3, 1981).
M. W. Blasgen, Science 215, 869 (1982).
W. M. Carlson and D. V. Kerner, Data Base 10
(No. 4), 3 (1979).
F. P. Brooks, The Mythical Man-Month: Essays
on Software Engineering (Addison-Wesley,
Reading, Mass., 1975).
E. W. Dijkstra, Commun. ACM 11 (No. 3), 147
(1960).
C. A. R. Hoare, ibid. 12 (No. lo), 576 (1969).
R. W. Floyd, Math. Aspects Comput. Sci. 19, 19
(1967).
H. D. Mills, Science 195, 1199 (1977).
M. A. Johnson, Principles of Program Design
(Academic Press, New York, 1975).
M. E. Fagen, IBM Syst. J . 15 (No. 3), 182
(1976).
H. Rkmus, in Software Engineering Environ-
ments (North-Holland, Amsterdam, 1980). p. ",-
LO/ .
B. W. Kernighan and S. P. Morgan, Science
215, 779 (1982)
T. A. Doluta, R. C. Haight, J. R. Mashey, Bell
Syst. Tech. J. 6 , 2177 (1978).
J. N. Buxton and L. E. Druffel, in Software
Engineering Environments (North-Holland,
Amsterdam, 19801, p. 319.
R. A. DeMillo and R. J. Lipton, in Software
Metrics, A. Perlis et al., Eds. (MIT Press,
Cambridge, Mass., 1981), p. 77.
R. Kowalski, Commun. ACM 22 (No. 7), 424
(1979).
M. Hammer and G Ruth, in Research Direc-
tions in Software Technology, P. Wegner, Ed.
(MIT Press, Cambridge, Mass., 1979), p. 767.
M M. Lehman, IBM Tech Discl. Bull. (1976).
J Backus, Commun. ACM 21 (No. 8), 613
(1978).

quiring years of effort to create. The
operating system written by IBM for its
System1360 series of computers, OSl360,
required more than 5000 man-years of
development effort (I) . Also, most oper-
ating systems have been batch systems,
with time-sharing capabilities grafted on
after the fact (although this path is not
universal).

In a broader sense a system, be it
UNIX or OSl360, is often taken to in-
clude not only the central kernel that
controls the hardware. but also essential
utilities such as compilers, editors, com-
mand languages to control the sequenc-
ing of programs, and programs for
manipulating files, printing information,
and accounting for usage. A system may
include not only all these programs, but
also general-purpose programs devel-
oped merely to be run on the system.
Exam~les include formatters for docu-
ment preparation, routines for statistical
analysis, and graphics packages.

This leads to the view that an operat-
ing system is built layer on layer, rather
like an onion-a metaphor that also al-
lows for wry jokes about tears. Where

0036-807518210212-0779S01.0010 Copyright (-3 1982 AAAS 779

"UNIX" or "system" occurs in this
article, the context should indicate
which layer of the onion is meant.

History

The history of UNIX is well covered
in two papers by one of its creators,
Dennis Ritchie (2, 3). In brief, UNIX
began with Ken Thompson's experi-
ments on a discarded PDP-7 computer in

DEC VAX-111780, the Univac 1100, the
IBM 370, the Amdahl 470, and several
microcomputers.

UNIX has also become available from
more than one supplier (8). At least a
dozen companies furnish systems de-
rived from UNIX and sold under subli-
censes of a Western Electric license;
other companies sell systems that are
UNIX look-alikes, similar in function
but developed independently to be free
of licensing restrictions. By late 1981

Summary. The UNIX operating system, a general-purpose time-sharing system,
has, without marketing, advertising, or technical support, become widely used by
universities and scientific research establishments. It is the de facto standard of
comparison for such systems and has spawned a small industry of suppliers of UNIX
variants and look-alikes. This article attempts to uncover the reasons for its success
and to draw some lessons for the future of operating systems.

1969, after Bell Laboratories withdrew
from the Multics project (4). (The name
UNIX is a weak pun on Multics.)
Thompson's sub-rosa system soon at-
tracted Ritchie. By 1970 it had evolved
sufficiently that management was per-
suaded to purchase a PDP-11/20 mini-
computer, ostensibly to create a docu-
ment preparation system, something that
might today be called a word-processing
system. When the document preparation
software was delivered to its customer,
the Bell Laboratories patent organiza-
tion, in 1971, UNIX had already proven
useful in many areas, with document
preparation merely one application.

The PDP-11/20 was replaced by a
PDP-11/45, and UNIX gradually spread
throughout Bell Laboratories. Its great-
est developmental leap took place in
1973, when it was rewritten from its
original assembly language form into C,
a high-level language developed by
Ritchie (5). The fundamental structure of
that system has been retained through all
subsequent versions.

In 1975, the UNIX system was made
available as a licensed software package
by Western Electric to educational insti-
tutions for a nominal fee and to anyone
for commercial use under a schedule of
fees. In 1976, Ritchie and Stephen John-
son, taking advantage of the fact that the
system and (by this time) all of the
applications programs were written in C,
moved the system to an Interdata 8/32, a
machine of significantly different archi-
tecture from the PDP-11 (6). In an inde-
pendent effort, Richard Miller moved the
UNIX system to an Interdata 7/32 at the
University of Wollongong in Australia
(7). Since then, UNIX has been trans-
ported to other machines, including the

780

there were well over 3000 UNIX systems
worldwide: at least 1000 in the Bell Sys-
tem, close to 2000 at universities, and
another 600 in commercial and govern-
ment use. These numbers do not include
microprocessor-based systems, where
we have no estimates.

Overview of UNIX

File system. The file system is the
mechanism whereby the operating sys-
tem stores and retrieves information for
users. It consists of a hierarchy of direc-
tories, each of which may contain infor-
mation about other directories or files.
Normally each user has a "home" direc-
tory, in which he or she creates files
(programs. data, documents), and per-
haps other directories to help organize
large collections of files (Fig. 1). There
are also directories of systems programs
available to everyone. A UNIX file is
merely a stream of bytes (characters).
Users see no tracks, cylinders, blocks,
or other device characteristics that typi-
fy commercial operating systems.

Command interpreter. The command
interpreter, or "shell," accepts com-
mands from the terminal and interprets
them as requests to run programs. To
run a program, it is sufficient to type its
name. For example

who

lists the users currently logged on. The
program name is simply the name of a
file in the file system; if the file exists and
is executable, it is executed. There is no
distinction (as there often is in other
systems) between a system program like
who and one written by an ordinary user

for private use, except that system pro-
grams reside in a known place for admin-
istrative convenience, and the shell
searches there if it fails to find the pro-
gram in the user's own directory. Al-
though most users talk to the system
through it, the shell is not part of the
operating system; it is just another pro-
gram. As we shall see, this is of some
importance.

Inputloutput redirection. Normally,
input and output for a program take
place on the user's terminal, but the shell
can be told to change either assignment
to aim it at a file when the program is
executed. The command line

program <in >out

instructs the shell to have program take
its input from file in and place its output
on file out; program itself is unaware of
the change. On many systems redirec-
tion is impossible, or at best difficult,
because programs believe that they
should read or write only through the
user's terminal. On UNIX, redirection is
available to all programs without prear-
rangement because it is done by the
shell.

Device~Ves. Input and output devices
are handled in the same manner as ordi-
nary files. To print the output of program
on a line printer (Ipr) instead of writing it
on the file out, one says

program <in >Ipr

Of course the file in might also be a
device-perhaps an instrument record-
ing experimental data. Device files are
read and written like ordinary disk files,
except that reference to a device file
activates the device and passes data to or
from it by whatever protocol is appropri-
ate. A new device is added to the system
by writing a device driver (in C) to make
the device look like another file.

Program connection: pipes. Consider
the task of counting the number of peo-
ple using the system. Two programs can
cooperate to do this via a temporary file:

who >temp
wc <temp

who produces one line per logged-in user;
wc ("wordcount") counts the lines,
words, and characters.

One notable contribution of UNIX is
the notion of a pipe, a mechanism for
connecting programs. The "pipeline"

who I wc

performs the same task as in the example
above, without using temporary files.
The symbol I tells the shell to connect
the output of the program on the left to

SCIENCE, VOL. 215

the input of the one on the right. Pro-
grams connected by a pipe run concur-
rently, with the system controlling and
synchronizing the flow of data.

As a larger example, consider the task
of plotting a graph from data. A typical
UNIX approach might run a program

program <data

to produce the desired points. A separate
program, plot, prepares sets of numbers
for plotting on an appropriate graphics
device, so

program <data I plot

produces a curve like that in Fig. 2A. If
smoothing is necessary, a spline program
is interpolated:

program <data I spline I plot

This produces a curve like that in Fig.
2B. Additional programs can be inserted
to produce labels, and the final graph can
be typeset by UNIX document prepara-
tion software.

Programming Environment

UNIX provides a host of useful pro-
grams and a powerful command inter-
preter for invoking them. Besides neces-
sities like text editors and compilers,
there are tools for day-to-day use (elec-
tronic mail, calendar, interuser commu-
nication) and for mechanizing frequent
tasks (file comparison, searching, sort-
ing, counting), and even some interesting
games. There are also state-of-the-art
tools for document preparation and pro-
gramming language development.

Perhaps most significant is the style of
program development that has resulted
from being able to connect programs
easily. Programs tend to focus on doing
one thing only, but doing it well. Com-
plex tasks are performed by separate but
cooperating programs. Programs are de-
signed so that their input can come from
any other program, and their output is
usable by other programs. No possible
connection is foreclosed.

The software developed for document
preparation on UNIX is interesting both
in its own right and as an illustration of
this style of program development. The
basic tool is a text formatter called troff,
which converts text and format specifi-
cations into commands to control a pho-
totypesetter; troff, however, has no facili-
ties for complicated special material
such as mathematics or pictures, which
are dealt with by separate programs that
cooperate with troff. A program called
eqn deals solely with mathematics. It

recognizes portions of a document that
are mathematical expressions and trans-
lates them into troff commands. For ex-
ample

int sub 0 sup x dz over {I + z sup 2)
- = - tansup -1 x

is converted into troff commands which
typeset

The eqn program operates as a troff pre-
processor, so the usual sequence of op-
erations is

eqn textfile I troff

The two programs cooperate, and each is
much less complex than it would be if it
tried to do the whole job.

The approach taken with eqn has prov-
en so successful that other preprocessors
have also been developed. The language
and program for specifying tables is
called tbl. It acts as a preprocessor for
both eqn and troff. Another program, re-
fer, converts brief citations to complete
ones by searching a data base of refer-
ences. For example, this article could be
cited as

kernighan morgan science

The programs pic and ideal translate fig-
ure-drawing languages into troff com-
rnands that produce figures like those in
this article.

Fig. 1 (top). UNIX file
system hierarchy. The
directory root is the
starting point for file
searches through the di-
rectories of users' files
and systems files. User
bwk, working in his di-
rectory papers, access-
es the text of this paper
as science. User spm
accesses the same files
as /usr/bwklpapers/
science. Fig. 2 (bot-
tom). (A) Sample plot
produced by the pipe-
line program <data l
plot. (B) Sample plot
produced by the pipe-
line program <data l
spline I plot.

To place all these facilities into one
typesetting program would create un-
workable complexity. As it is, however,
each piece is documented and main-
tained separately and is independent of
the internal characteristics of the others.
Testing and debugging such a sequence
of programs is much easier than it would
be if they were all one.

In addition to the formatting pro-
grams, there are a variety of programs
that help create better text in the first
place. The earliest of these is spell, which
detects spelling errors in a document.
The first version of spell was developed
in a few moments by pasting together
existing programs for sorting and com-
paring word lists. The program has
evolved much since then, but it remains
a good example of how program devel-
opment takes place in a tool-rich envi-
ronment.

A more recent development is the
Writer's Workbench family of programs,
initiated by Lorinda Cherry (9). These
programs examine a document for split
infinitives, cliches, excessive use of pas-
sive voice, sexist phrases, and a variety
of other flaws.

Software Development Tools

UNIX provides an especially conge-
nial programming environment (10). The
interfaces to the basic system capabili-
ties of UNIX, particularly the input-

0 Directory

l - 7 File

12 FEBRUARY 1982

output system, are strikingly simple
compared to those of other systems. A
ten-line C program suffices to copy any
file in the file system to any other. In-
deed, since peripheral devices (tapes,
printers, terminals, autodialers) are also
treated as files, the same program can
handle utility functions like tape to print-
er, interuser communication, and tele-
phone calls.

Conventional programming can be
avoided to a remarkable degree. The
shell is an ordinary program, not part of
the system kernel, so it may be invoked
explicitly. This has some interesting con-
sequences when the shell takes its input
from a file instead of a terminal. If the
file cmds contains commands, then

runs the shell (sh) and executes the com-
mands as if they had been typed by hand.

In fact, if a text file is marked execut-
able, merely naming it causes the shell
to execute it, so if file nu contains
"who I wc" then typing the command nu
counts the users. Thus the shell can be
used to combine existing programs into
more complicated assemblages. The re-
sulting programs are easy to understand
since they are written in a very high level
language, the operations of which are
entire programs. But the user of a shell
program cannot, by running it, distin-
guish it from one written in a more
conventional language.

The shell is substantially more power-
ful than might be inferred from such
simple examples. It is a programming
language in its own right, with variables,
control flow, subroutines, and interrupt
handling. As the shell has become more
powerful, there has been a steady trend
toward writing complicated sequences in
the shell rather than in C. Since the
search path that the shell uses to find
programs can be set by each user for
himself, most users have a directory of
their own private commands that is
searched before the normal ones. In this
way, users can tailor the environment to
their own preferences. The program nu
to count users is a simple example of
such a private program.

Many applications programs can be
organized as language processors. They
recognize some structured input and per-
form actions based on it. UNIX provides
several tools for programming language
development, including a compiler-com-
piler called YACC and a lexical-analyzer
generator called LEX (11). The syntax of
a language is specified by a grammar,
with semantic actions written in C and
attached to the rules of the grammar.

YACC converts the grammar and ac-
tions into a parser that will process the
input, executing each action when an
instance of the corresponding grammati-
cal construct occurs. Similarly, LEX
converts a concise specification of the
lexical tokens of a language (keywords,
numbers, and so forth) into a program
that will recognize them in a stream of
text.

For large programs, and especially for
those whose construction involves multi-
ple processing steps such as YACC and
LEX, it is convenient to have another
program control the sequence of events.
MAKE (12) accepts a specification of
what to do, and does the processing
steps in the right order, with minimal
recompilation.

The Source Code Control System
(SCCS) (13) was developed to deal with
the problem of maintaining the consist-
ency of numerous versions of very large
programs. SCCS permits storing a his-
tory of the changes to a program
throughout its lifetime, so that the pro-
gram can be recreated as it was at any
earlier time. The system also makes it
easy to record information about why
changes were made and to ensure that
several programmers working on the
same program do not make inconsistent
changes. Although SCCS was originally
intended for programs, it works just as
well for managing multiple versions of
manuals and other documents.

Flexibility and Ease of Change

One strength of UNIX is the degree to
which it can be adapted to different re-
quirements and environments. This is
true at several levels. The use of search
paths, and indeed shell programs in gen-
eral, makes it possible to change the
actions of commands easily. This capa-
bility is heavily used in some UNIX-
based production systems developed at
Bell Laboratories. The user sees some-
thing different from the standard system,
but the difference is controlled by simple
shell programs rather than by new pro-
grams written in C.

Any program that is not part of the
system kernel can be replaced by a user
with one of his own. The shell itself is the
most obvious example: since it is just a
user program, any user can create his
own shell. Many systems have several
shells in coexistence. Since the kernel
itself is essentially all in C, it, too, is
relatively easy to chti~rge; consequently,
there are also multiple versions of the
UNIX kernel.

The source code for UNIX is distribut-
ed as part of the system. Being in C, it is
much easier to read, understand, and
manipulate than it would be if written in
assembly language. Students enjoy
studying the software and then modify-
ing it. The availability of the source code
is one reason why UNIX has been suc-
cessful in universities.

Of course, it is not an unmitigated
blessing that the system is easy to
change. One immediate result is the pro-
liferation of variants. Mutations are nec-
essary if evolution is to occur, but they
are a nuisance in the short term.

Portability

Software written in assembly language
(as most operating systems are) is forev-
er wedded to one kind of machine. By
contrast, software written in a high-level
language like C is potentially portable,
although care is necessary to achieve
portability. Once a C compiler is avail-
able for a new machine, the UNIX soft-
ware can be moved to the new environ-
ment with substantially less effort than
would be required to duplicate it from
scratch.

Nevertheless, transporting UNIX is
not trivial. Normally it takes two or three
talented people 6 months to obtain a
workable production environment, but
the job has been done enough times now
to make UNIX available on a variety of
hardware, from Amdahl 470's to Zilog
Z8000's. Most users are not aware of
specific hardware characteristics when
running a program. Most programs are
literally identical on all machines, al-
though a few, such as compilers, have
some part that is inherently machine-
dependent. The system kernel itself,
about 8000 lines of C, is about 95 percent
identical from one machine to another.

The economic advantages of portabil-
ity are great. It is highly desirable to run
the same software on a variety of ma-
chines, to make use of available hard-
ware, to avoid being tied to obsolete
hardware that is no longer cost-effective,
and to avoid being dependent on a single
vendor.

Other Advantages

From the beginning, UNIX has been
run on hardware that is popular in its
own right. It is likely that UNIX would
have taken longer to catch on if it had not
first been available on the widely used
PDP-11.

SCIENCE. VOL. 215

UNIX runs effectively on small ma-
chines, which makes it feasible for
groups with small budgets. Furthermore,
the facilities that UNIX provides-edit-
ing, text formatting, and keeping track of
files-are all jobs that pervade program-
ming, so one does not have to make
radical changes in one's approach to
programming to make effective use of
the system. This has been particularly
important for large software develop-
ment projects in which the target com-
puter was already specified. The Pro-
grammer's Workbench version of UNIX
(14) provides a large number of tools that
can be used to develop software for any
computer system.

Another factor contributing to the
spread of UNIX is the enthusiasm of
people who are using it. For example,
students who become acquainted with
UNIX continue to want it when they
enter industry or government.

UNIX users communicate by the tele-
phone system and a standard set of
UNIX programs for exchanging mail and
files. It is not known how big this net-
work really is, but we can readily identi-
fy more than 300 sites. As this informal
network grows, there is an incentive to
use UNIX to gain access to it for elec-
tronic mail.

Applications of UNIX

Text processing. UNIX programs are
used for preparing the bulk of Bell Labo-
ratories internal memoranda and man-
uals, patent applications, and manu-
scripts for publication. For technical ar-
ticles the UNIX system is about twice as
fast as typewriter composition (15). The
programs have also been adopted by
universities, industries, and technical so-
cieties around the world. For example,
the American Physical Society has used
UNIX for several years to typeset gal-
leys for Physical Review B, a journal
containing highly complex mathematics.

Software development. The Program-
mer's Workbench version of UNIX has
been used inside the Bell System and
outside, under license, to develop soft-
ware for a large number of different
computers.

Laboratory automation. Inexpensive
microcomputers, acting as satellites to a
standard UNIX system, control labora-
tory experiments and analyze and dis-
play results (16).

Information systems. It is easy for an
individual, using standard UNIX tools
such as the pattern scanning and pro-

12 FEBRUARY 1982

cessing language AWK (17), to put to-
gether programs to retrieve information
from small databases; dozens of such
small information systems have been
made by groups using UNIX. The best-
known commercial database manage-
ment system based on UNIX is probably
INGRES (18).

Computer science education. UNIX
has been popular in computer science
departments because of its small size and
clean structure. As John Lions (19) of
the University of New South Wales ob-
served in 1977, "the whole documenta-
tion is not unreasonably transportable in
a student's briefcase. " Unfortunately,
Lions's remark is less true today.

Nonapplications

Real-time systems. UNIX was de-
signed for a time-sharing environment in
which users give commands to a system
that does a significant amount of compu-
tation in response to each command. It
was not designed for real-time control of
high-speed equipment, in which respons-
es must be made to critical inputs in
milliseconds or a strict schedule of dead-
lines met for critical outputs.

Large databases. Similarly, UNIX
was not designed to handle large vol-
umes of high-speed transactions, as
would be generated, for example, by an
airline reservations system in which indi-
vidual commands require only trivial
computation but do require quick access
to large disk files, together with explicit
provisions for consistency control and
quick recovery from system shutdown.
UNIX has been used for various small
information management systems be-
cause UNIX-based systems are easy to
maintain and modify. As of today, how-
ever, large databases have to trade flexi-
bility for performance, and maximum
performance still requires a specialized
database management system on a large
computer.

Nonprogrammers. The interface be-
tween UNIX and users is by no means as
elegant as the underlying system design
(20). Professional programmers (like
Thompson and Ritchie) accordingly tend
to be much more enthusiastic about the
beauties of UNIX than casual users or
nonprogrammers. The tools to build a
smooth interface between users and,
say, a UNIX-based personal computing
system or office automation system cer-
tainly exist, and various entrepreneurs
already provide interfaces more suited to
nonspecialists. But the standard version

of UNIX is reminiscent of the Model T
Ford in that users are expected to cus-
tomize it themselves.

Conclusions

UNIX is by no means the end of the
road in operating systems, but there are
some technical lessons in its success for
designers of future operating systems
and other software. UNIX demonstrates
that the right combination of ideas imple-
mented straightforwardly can be remark-
ably effective. A simple file system is
much easier to build than the traditional
commercial ones and more convenient to
use. A separate command interpreter is
an excellent way to organize command
execution in a time-sharing system. Pro-
gram interconnection not only makes it
easier to write and use programs, but
seems to foster good design and a tool-
building attitude among its users. High-
level languages are here to stay; they
extract a moderate cost in space and
time, but pay off in comprehensibility,
ease of change, and portability. Finally,
the fact that UNIX was developed liter-
ally in an attic by two people indicates
that there is still a place for individual
contributions to software. A good prod-
uct can find its way without marketing;
indeed it may be the better for having no
marketing concerns to drive it.

References and Notes

1. F. P. Brooks, Jr., The Mythical Man-Month
(Addison-Wesley, Reading, Mass., 1975), p. 31.

2. D. M. Ritchie, Bell Syst. Tech. J. 57, 1947
(1978).

3. , paper presented at the Symposium on
Language Design and Programming Methodolo-
gy, Sydney, September 1979.

4. E. I. Organick, The MULTZCS System (MIT
Press, Cambridge, Mass., 1972).

5. B. W. Kernighan and D. M. Ritchie, The C
Programming Language (Prentice-Hall. Engle-
wood Cliffs, N.J., 1978).

6. S. C. Johnson and D. M. Ritchie, Bell Syst.
Tech. J. 57, 2021 (1978).

7. R. Miller, Oper. Syst. Rev. 12 (No. 3), 32 (1978).
8. R. C. Johnson, Electronics 54, 119 (1981).
9. L. L. Cherry, paper presented at Association for

Computing Machinery Symposium on Text Ma-
nipulation, Portland, Ore., June 1981.

10. B. W. Kernighan and J. R. Mashey, Software
Pract. Exper. 9, 1 (1979).

11. S. C. Johnson and M. E. Lesk, Bell Syst. Tech.
J . 57, 2155 (1978).

12. S. I. Feldman, Software Pract. Exper. 9 , 255
(1979).

13. A. L. Glasser, paper presented at the Associa-
tion for Computing Machinery Software Quality
Assurance Workshop, San Diego, Calif., 15 to
17 November 1978.

14. T. A. Dolotta, R. C. Haight, J . R. Mashey, Bell
Syst. Tech. J . 57, 2177 (1978).

15. B. W. Kernighan, M. E. Lesk, J . F. Ossanna,
ibid., p. 2115.
B. C. Wonsiewiecz, A. R. Storm, J. D. Sieber,
ibid., p. 2209.
A. V. Aho, P. J. Weinberger, B. W. Kernighan,
Software Pract. Exp. 9, 267 (1979).
M. Stonebraker, Assoc. Comput. Mach. Trans.
Database Syst. 5, 412 (1980).
J. Lions, personal communication.
D. A. Norman, Datamation 27 (No. 12), 139
(1981).

783

