
Progress in software is inevitably com- 
pared with that in hardware. Usually, 
software does not fare well. Impressive 
curves can be drawn showing the dra- 
matic improvement in processor speed 
or storage capacity. In contrast, the 
function provided by software not only 
defies simple numeric characterization, 
it also does not even have, at this point, a 
useful taxonomy. Thus there are not 
even practical terms in which to measure 
progress. Further, for most computer 
users the cost of hardware is declining 
while that of software is increasing. The 
declining hardware costs allow new ap- 
plications to become economical, but 
almost certainly new applications re- 
quire new and more complex software. 
Many fear that the availability of the 
latter may be the gating factor in the 
growth of the computer industry. 

Measurement of software against 
hardware is ultimately misleading, since 
they have distinctly different attributes. 
First, the logical complexity of the soft- 
ware typically far exceeds that of the 
hardware in most systems. In a large 
machine, performing commercial appli- 
cations, programs comprising a total of 
more than 10' lines of code must work in 
tight relationship with each other. This 
number far exceeds the number of cir- 
cuits in the central processing unit. 
While the hardware must execute the 
movement of data to and from external 
storage, the software is responsible for 
the placement and logical structure of 
those data. Again, in a large system it is 
not unusual to find the software respon- 
sible for more than 1012 bits of informa- 
tion. By any measure, the design and 
management of large software systems 
are among the most complex tasks ever 
undertaken. 

A second distinction between hard- 
ware and software is that the latter tends 
to accumulate over time, while the for- 
mer is periodically totally replaced by 
improved technology. Particularly in 
commercial data processing applica- 
tions, many of the most economically 
valuable tasks were programmed in the 
1950's and 1960's. Over the years, these 
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programs have been significantly en- 
hanced and continuously maintained, 
but it is usually the exception that they 
have been totally rewritten in modern, 
structured, and well-documented ap- 
proaches. The decreases in cost and 
gains in performance of hardware have 
made this tactic pragmatic, since hard- 
ware capabilities have been able to keep 
up with the throughput requirement 
growth of the applications. Thus it is not 
uncommon to find such critical tasks 
implemented in old, poorly structured, 
and difficult to maintain code. The total 
replacement value of these programs is 

of the work associated with designing the 
software is in reality systematizing and 
designing the task that the user requires. 
This must be done before the software 
can be designed. As I will discuss later, 
the technology for defining the require- 
ments for a software system is an area in 
most urgent need of improvement and 
itself constitutes a major portion of the 
so-called software bottleneck. The tech- 
nology for designing and implementing 
software, once the requirements are well 
defined, is in far better shape. 

It is these three attributes-complex- 
ity, accumulation, and the need for sys- 
tematization-that give software its 
unique and sometimes unenviable char- 
acteristics. 

Status 

Software has traditionally been cate- 
gorized as either system or application. 
System programming is normally provid- 
ed by hardware manufacturers or soft- 
ware houses for the purpose of making 
application writing and execution easier. 

Summary. Two principal themes are observed in software development, both 
aimed at improving the productivity of developing and maintaining new applications. 
The first is to provide increasingly rich system programming function in order to 
handle the details of managing hardware resources. The second is to provide 
application development facilities with logical structures and building blocks more 
closely aligned with the logic of the application itself. An additional challenge is to 
provide these in a way that will allow continued enhancement of existing software. 

in the tens of billions of dollars (1). But 
more important, the continuing mainte- 
nance and restructuring that they require 
consume a significant programming re- 
source. 

The third critical difference between 
hardware and software is that the latter 
has a much more detailed involvement in 
the work of the person or institution that 
it serves. The effects of hardware are 
largely confined to the data processing 
department or to a terminal or personal 
computer on the desk of the user. The 
logic of the software, on the other hand, 
is intimately involved in the procedures 
and work flow of the user. Early soft- 
ware was focused on procedures that 
were already systematized. These proce- 
dures included conventional business 
and management applications as well as 
scientific applications for which compu- 
tational algorithms had been established. 
The easy applications have been pro- 
grammed. Contemporary software work, 
consequently, usually involves the es- 
tablishment of new tasks or procedures 
that did not previously exist. Thus, much 

Thus a useful way to examine the history 
and status of software is to focus on the 
growing role of system software and the 
increasing productivity in the task of 
constructing applications. 

Figure 1 shows the principal forces in 
the changing role of system program- 
ming. The expanding "horn" represents 
the increasing variety of function offered 
as one moves from the hardware instruc- 
tion set toward the end-user set. The 
boundary below the system software, 
defined by hardware and microcode, has 
moved up as hardware technology has 
improved. In early computers the func- 
tion provided by the hardware was prim- 
itive, and the system software had many 
low-level responsibilities. For example, 
several early machines had working 
memories involving delay lines or mag- 
netic drums, a slow-access serial work- 
ing memory. The performance of pro- 
grams could vary drastically (or cata- 
strophically), depending on how long the 

The author is director of the Santa Teresa Labora- 
tory, International Business Machines Corporation, 
San Jose, California 95150. 

0036-807518210212-0775$01.00/0 Copyright O 1982 AAAS 775 



processing unit would wait for the next 
logical instruction to arrive at the end of 
the delay line or at the drum reading 
head so that it could be accessed and 
executed. Thus the proper positioning of 
instructions throughout the memory re- 
quired a complex assignment based on 
an estimation of the execution time be- 
tween instructions and possible branch- 
ing effects. System programming man- 
aged that detail for the user. 

The principal software component for 
managing hardware detail is the operat- 
ing system. These systems began to 
emerge in the 1950's but were not in 
broad application until the early 1960's. 
Operating system software was written 
to manage the details of moving data to 
and from storage or into and out of 
telecommunications lines and other pe- 
ripheral devices. It was extended to take 
the responsibility for scheduling work 
and allocating access to critical compo- 
nents such as multiple processing units 
and memory. Much complexity was still 
presented to the application programmer 
in early operating systems because the 
cost of hardware required user decisions 
to achieve its best utilization. Simplifica- 
tion is achieved through increasingly 
more sophisticated system software and 
microcode that would previously have 
been uneconomical to execute. A design 
such as the IBM Systeml38, which es- 
sentially eliminates the task of managing 
storage, exem~lifies this direction. 

Since users of large systems cannot 
accommodate major changes in the pro- 
gramming that executes their applica- 
tions, continuous evolutionary restruc- 
turing of operating systems is one of the 
major facts of the software environment. 
The evolutionary step to achieve this 
might be characterized as a maintenance 
step and might be lamented as unproduc- 
tive. Such a characterization would miss 
the point of one of the major challenges 
before us. Hardware advances and sys- 
tem growth will continue to invalidate 
initial software design trade-offs. We 
must therefore work to improve our ef- 
fectiveness in the required restructuring 
work. 

Application Development Productivity 

The other direction of growth for sys- 
tem software is toward the user rather 
than the hardware. In this case, the work 
is associated with the logic of the appli- 
cation rather than the physical character- 
istics of the hardware. This corresponds 
to the movement of the upper boundary 
in Fig. 1. The principal carrier of this 
theme has been the area of programming 
language. The earliest assistance in this 

area was provided by assemblers, which 
took over the details of assigning instruc- 
tions and data to specific hardware mem- 
ory locations, thus allowing the program 
writer to use symbolic terms for these 
elements. This was followed in the 
1950's by the emergence of higher level 
languages. These not only incorporated 
the capabilities of assemblers but, more 
important, greatly increased the logical 
power of the instruction set for the appli- 
cation writer. Operations involving com- 
plex algebraic expressions could then be 
expressed as a single language instruc- 
tion. The language software would then 
"compile" each such instruction to a 
larger number of machine language in- 
structions. 

Many such languages were developed 
in the late 1950's and 1960's, with their 
command sets styled to suit particular 
areas of application in business, text 
handling, and scientific computation. 
Several attempts were made to design 
"universal" languages in the hope that 
the proliferation might be ended. These 
efforts have yielded popular, but far 
from universal, languages such as PLII, 
ALGOL, and APL. Claims to universali- 
ty are not often made at this time. Fur- 
ther, there is growing argument that lan- 
guages with too rich a structure, which 
attempt to do too much, may be overly 
complex and thus error-prone (2). 

There seems to be substantial evi- 
dence that program writers are reluctant 
to change from a language in which they 
have become productive even though 
new languages may be demonstrably su- 
perior. The strongest evidence for this is 
that the preponderance of code being 
written today is in the old languages of 
COBOL and FORTRAN. Thus the rate 
of change of language usage may be 
more appropriately measured in genera- 
tions of people than in generations of 
software development. 

Database software provides logical ca- 
pabilities that are comparable in impor- 
tance to languages. Especially in com- 
mercial applications, the interrelation- 
ship among data elements can become 
extremely complex. These data elements 
and their interrelationships represent a 
model of the business or technical pro- 
cess that the computer is assisting in 
managing. Given the continuous change 
of the data elements and their interrela- 
tionships as external reality changes, the 
management of data constitutes a signifi- 
cant portion of the entire programming 
task. It is the job of database software to 
remove this work from the application 
program and present to that program 
consistent and well-maintained views of 
the data. In addition, these systems 
share with the operating system the man- 

agement of the logistics associated with 
recovering the database from hardware 
and software failures and the manage- 
ment of both on-line and off-line storage 
space. 

As with languages, there are many 
logical approaches to the structuring of 
data. Again, the search for universals 
has not been productive, since different 
types of usage favor different logical 
interfaces. This area itself has become 
one of the principal elements of comput- 
er science (3) and is summarized by 
Blasgen (4) in this issue. 

If one is willing to specialize the types 
of application programs that may be 
written, programming systems with sig- 
nificantly higher logical levels can be 
provided. An example of these facilities 
is the class of application generators. An 
early application generator was the re- 
port program generator (RPG) language, 
which provides powerful and easy-to-use 
capabilities for producing simple busi- 
ness reports. Some of these languages 
now provide facilities that greatly aid the 
construction of terminal screen formats 
and writing of complex commercial 
transactions. They also simplify applica- 
tion maintenance by helping to isolate 
changing data and business procedures 
from the overall program control struc- 
ture. Claims of productivity improve- 
ments exceeding a factor of 10 over 
conventional languages such as COBOL 
are repeatedly made. 

"What" versus "How" 

Beyond such systems are the nonpro- 
cedural query languages. These allow a 
user with little programming knowledge 
to access complex data structures and, 
further, to request relationships among 
those data which were not previously 
structured by a database administrator. 
These best exemplify the theme of re- 
moving work from the application writer 
by allowing him to state "what" is want- 
ed rather than to specify "how" the 
computer is to achieve it. In this case, 
the goal is to eliminate the intermediary 
application programmer entirely. 

In terms of eliminating bottlenecks, 
the major challenge facing software de- 
velopers is that of providing powerful 
computing facilities for the general pub- 
lic. Most people are not at all interested 
in mastering the arcane discipline of 
computer programming. Not only does 
the what as contrasted to the how ap- 
proach seem necessary to serve them, 
but the tasks that the computer is to 
undertake must be described to the user 
in terms which are immediately meaning- 
ful in his environment-not those which 



are simplest for the computer. A system 
such as the Xerox STAR professional 
work station is an example of such a 
direction. The work elements (such as 
letters and files) and the tasks (such as 
creating, routing, and storing) are pre- 
sented to the user in pictorial form. The 
logic of the user's application can be 
largely achieved by pointing at the tasks 
and the data elements in order to proper- 
ly interrelate them. It is expected that 
systems of this sort will emerge in an 
increasing variety of specialized end- 
user environments. 

This trend is still another manifesta- 
tion of the lack of a single universal 
approach to programming computers. 
Since the work that computers do will be 
driven by the virtually uncountable num- 
ber of tasks that humans may want to 
undertake, one begins to see why it is so 
difficult to develop a taxonomy of com- 
puter software at any but the most primi- 
tive logical levels. The top of the horn in 
Fig. 1 will expand indefinitely. 

It might be necessary first to achieve a 
taxonomy of human tasks, an endeavor 
that has not yet yielded substantial re- 
sults. Practical results are emerging in 
business data processing, however. Carl- 
son and Kerner (5) have demonstrated 
the practical application of Donald Ber- 
stine's business information analysis and 
integration technique (BIAT). Bernstine 
has shown that a large class of applica- 
tions can be mapped into a useful struc- 
ture by the yeslno answers to seven 
questions. Questions such as "Is the 
product paid for at delivery or billed 
later?" or "Is the product rented or 
purchased?" yield a structure for the 
required data system. 

Without a more general approach, the 
specification of user applications is still 
very much in the realm of art and inven- 
tion. However, once that design require- 
ment is stated, an increasingly power- 
ful base of software engineering technol- 
ogy is available to aid in its implementa- 
tion. 

Software Production 

Most computer users find it far more 
economical to purchase or lease soft- 
ware packages that are already written 
for their applications than to develop 
them in-house. At this time, there are 
more than 6000 products commercially 
available for minicomputers and larger 
systems, along with an unknown but 
rapidly increasing number of offerings 
for personal computers. Despite this 
large inventory, most medium and larger 
facilities also do a great deal of custom 
programming for unique applications or 
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continuing maintenance of old code. 
Thus, both for a very large number of 
computer users and for the producers of 
commercial packages themselves, the 
technology for improved software pro- 
duction is of critical importance. 

Like any process that has undergone 
systematic refinement, software produc- 
tion has been divided into increasingly 
specialized and differentiated tasks. Pro- 
gramming in the 1950's involved little 
planning. At most, a flow chart outlining 
the major logical structure was prepared. 
One then began coding through the flow 
chart, designing and debugging each of 
the principal paths. Since machine re- 
sources were expensive, good code was 
regarded as that which was most tightly 
written, and cleverness in exploiting ev- 
ery last logical element of the instruction 
set was clearly to be admired. While 
many of the programs written in this 
fashion achieved their objectives, funda- 
mental problems soon became apparent: 

1) Such programs were difficult to 
handle by more than one person. Essen- 
tially, there was no approach to parti- 
tioning the task so that several people 
could cooperate and still maintain over- 
all logical cohesion. 

2) The overall task that the program 
was to achieve was usually understood 
only by the programmer. If the user 
was to be another person or group, there 
was often much frustration and disagree- 
ment over what was to be achieved due 
to lack of precision in stating the require- 
ment. 

3) Probably the most critical problem 
was that the program had poor structure; 
logically, it resembled a bowl of spaghet- 
ti as contrasted to a set of building blocks 
with well-defined interfaces. If the pro- 
gram was to be enhanced or maintained 
by others, this attribute was most harm- 
ful since small changes in the code could 
have significant and unpredictable ef- 
fects as they propagated throughout the 
tightly coupled structure. 

The limitations of this approach to 
programming became graphically clear 
when large projects were undertaken 
which contained many programs inter- 

Lower cost technology 
improved architecture 

acting with each other. Although there 
were many such efforts in the early 
1960's, the most notable was the devel- 
opment of OS1360, the operating system 
for the IBM System1360 computers. This 
development, which has been chronicled 
by Brooks (6), clearly demonstrated the 
necessity for design and management 
cohesion in large projects. The principal 
lesson was that the tasks of requirements 
definition and design should be clearly 
separated from coding. For manage- 
ment, the difficult lesson was that adding 
more people to the latter stages of a 
project that is falling behind is likely to 
add further delay because of their lack of 
knowledge of design detail. 

By the late 1960's, work in mathemat- 
ics and computer science began to pro- 
duce practical guidance for program- 
ming. Dijkstra (7) stressed the impor- 
tance of the program as a medium of 
communication. The flow of the program 
during its execution should closely 
match the structure of the application 
task. Not only would this aid others who 
must understand the intent behind the 
program, it would also guide the designer 
in accurately and completely represent- 
ing the application. Dijkstra identified 
program constructs that would facilitate 
achieving this similarity in structure be- 
tween programming and the require- 
ment. He further argued that indiscrimi- 
nate use of the popular GOT0 instruc- 
tion, which would cause unexplained 
breaks in the program flow, was counter 
to this objective. 

Hoare (8), following the work of Floyd 
(9), provided complementary guidance 
by demonstrating properties of program- 
ming languages that help eliminate com- 
mon coding errors. These allow the lan- 
guage to enforce assertions about the 
range and other properties of variables 
and provide a formal approach to mathe- 
matically verifying that the program 
matches the intent of the designer. Lan- 
guages such as PASCAL and the lan- 
guage ADA proposed by the U.S. De- 
partment of Defense have incorporated 
much of this thinking. 

These foundations were soon supple- 



mented by further design and manage- 
ment techniaues to form the field of 
software engineering and the particular 
discipline of structured programming 
(10). It has become common practice to 
partition large programs into-functional 
modules (11) with a disciplined interface 
structure between them, along with tech- 
niques to formally review designs and 
inspect code (12). Most established pro- 
gramming organizations have incorpo- 
rated these practices through program- 
ming process guidelines (13). 

An additional dimension of software 
engineering is the programming environ- 
ment. The environment is defined by the 
set of programming tools that aid the 
implementation of the process guidelines 
and facilitate control of the project as it 
moves through the stages of specifica- 
tion, design, coding, testing, and mainte- 
nance. These tools and the computing 
resource that they require are the princi- 
pal form of capital investment for im- 
proving the productivity of program- 
ming. Modern operating systems such as 
UNIX, described by Kernighan and 
Morgan (14) in this issue, were designed 
with the entire environment in mind and 
include concepts such as the program- 
mer's workbench ( IS) ,  a coordinated set 
of tools. 

A major current effort is the design of 
the environment associated with the 
ADA language. The purpose is to im- 
prove the quality and productivity of the 
massive amount of programming re- 
quired by the Department of Defense for 
so-called embedded applications. The 
"Stoneman" proposal for an environ- 
ment consisting of a database, debug- 
ging tools, code contol mechanism, and 
so on (16) has been developed essentially 
in parallel with the "Steelman" proposal 
for the language itself. 

Many problems with programming still 
exist. This is particularly true in the area 
of very complex designs. Deceptively 
simple requirements carried through the 
stages of specification and detailed de- 
sign can virtually explode in terms of 
required function. Thus reliable cost and 
schedule commitments cannot be made 
until the early stages of the design pro- 
cess have been completed. If those costs 
are unacceptable, a considerable amount 
of effort may have to be abandoned. 
Usually, there is a fundamental renegoti- 
ation of the requirement, eliminating ex- 
cessively costly function. One of the 
most critical needs in the field is the 
establishment of metrics that can assess 
requirements and give reasonable pre- 
dictions of implementation costs. Work 
on such metrics is still far from yielding 
practical results (1 7). 

Research Directions 

The overall goals of research in pro- 
gramming methodology are to improve 
the productivity of producing and main- 
taining the program and to improve the 
quality in terms of an error-free manifes- 
tation of the original requirement for the 
program. This goal has led to an increas- 
ing focus on the early stages of the 
programming process. It has been shown 
that an error detected at the beginning of 
the cycle may be two orders of magni- 
tude cheaper to remove than one found 
in actual production (13). It is further a 
reliable generalization that quality is 
achieved in the design and implementa- 
tion of the program; it cannot be ac- 
quired simply through debugging. Sever- 
al of the key research approaches are 
reviewed below. 

Research in programming transforma- 
tion is aimed directly at these goals. A 
very high level language is provided for 
writing the specification itself with the 
goal of minimizing human intervention in 
transforming that specification into run- 
ning code. Since the specification is sup- 
posed to describe what the program is to 
achieve, not how it is to be implemented, 
such work really strikes at the heart of 
the programming problem. As men- 
tioned earlier, query languages have 
achieved this result for problems involv- 
ing data access and structuring. The 
challenge is to incorporate increasingly 
large classes of work and resolve the 
what of the specification to the how of 
the procedural machine code with ade- 
quate efficiency. However, there will be 
significant value in achieving better lan- 
guages for specification, since the result- 
ing structure will better automate the 
means for verifying that the programs 
meet the specification. The ultimate 
goal, of course, is to directly compile 
these programs from the higher level 
specification language. 

Irrespective of the level of the lan- 
guage, research will continue on the 
structuring of programs with the goal of 
more clearly separating the different 
types of tasks in an application. 
Kowalski (18) argues that an algorithm 
has the purpose of both defining the logic 
of what is to be computed and determin- 
ing how it is to be done efficiently. It 
should be possible to change either of 
these aspects with a minimum of impact 
on the other. Current languages do not 
facilitate this. 

Another exciting and potentially far- 
reachiqg approach derives from the tech- 
nology of artificial intelligence. So-called 
knowledge-based automatic program- 
ming involves a dialogue between the 

programmer and the system. As the pro- 
grammer begins to state what must be 
achieved, the system attempts to struc- 
ture an overall program to meet the 
requirements stated. This intermediate 
result is presented to the programmer for 
further elaboration or correction. The 
dialogue converges when the program- 
mer is convinced that the overall require- 
ments are met and the system is satisfied 
that it has captured sufficient detail to 
resolve a complete program. So far, such 
work has been successful only for small 
programs (19), but in the long term it will 
attack one of the most difficult issues in 
programming-that of extracting precise 
requirements from the user. Thus, as 
with program transformation, useful re- 
sults that are far  short of complete auto- 
mation of the programming process can 
be achieved. 

A different approach emerges from an 
engineering paradigm. It is argued that 
an appropriate inventory of "standard 
parts" with appropriate interface disci- 
plines between them can be the basis for 
composing much more complex pro- 
grams. Not only might the programs be 
assembled much more quickly, but they 
could be of higher quality since each of 
the parts would be subject to much more 
rigorous verification and testing. While 
this approach has been successful in 
some areas of application programming, 
significant results have not yet been 
achieved in more complex areas. Two 
fundamental issues seem to remain. One 
is to determine the right set of standard 
parts. While it is probably not possible to 
prove that any set of higher level parts is 
optimal, a subset of commonly used 
functions would represent significant 
progress. A more critical issue is to 
provide a system environment in which 
these parts can be properly hooked to- 
gether. In hardware, interfaces between 
components are constrained by electrical 
and physical considerations. In program- 
ming, however, a new discipline is need- 
ed to ensure proper interfaces between 
standard components; this function has 
been referred to as a funnel (20). 

It is important to recognize that stan- 
dard components are simply another ap- 
proach to providing very high level func- 
tions such as those being pursued in 
program transformation research. The 
goal of both is to allow the programmer 
to construct his program in terms that 
more naturally fit the function associated 
with his problem rather than the detail 
required for the machine to implement 
that function. 

Potentially the most elegant approach 
is that embodied in functional program- 
ming. Backus (21) has observed that a 
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great deal of the complexity of current 
programs results from the lack of strong 
algebraic properties relating the primi- 
tive functions of the programming lan- 
guage. He sees a need for "program 
forming operations" with such proper- 
ties, whose domains are themselves pro- 
grams. With these, a rigorous approach 
might be found for defining the charac- 
teristics of new programs built from 
combinations of existing ones. Backus 
observes that a principal barrier to de- 
signing languages with such strong prop- 
erties is the von Neumann architecture 
of most existing computers. He asserts 
that the detailed assignment and manipu- 
lation of storage which is required for 
each program make it difficult to define 
useful program-forming operations. The 
particular choices in managing storage 
for each of the programs to be composed 
would probably be inconsistent. 

A set of operations for composing new 
programs from existing ones could have 
profound implications for hardware de- 
sign. The hardware instructions would 
directly implement the rules for compos- 
ing programs. Further, proposed func- 
tional programming approaches offer the 
possibility of better determining which 
tasks may proceed in parallel. This 
would allow better use of advances in 
very large scale integration, which make 
high degrees of multiprocessing most 

cost-effective. While this work is still in 
an early stage, it is likely to lead to one of 
the most significant advances in comput- 
er science in the 1980's. 

Conclusions 

Since active research in the software 
engineering area was begun in the late 
1960's, much has been accomplished. 
Given stable requirements, it will be 
largely a matter of skilled effort and 
discipline to produce a predictable and 
reliable result. However, as indicated by 
the number of different and still unprov- 
en approaches to new programming 
methodology, this field is still very 
young. Thus it is likely that a decade 
hence the techniques in use today will be 
considered ill-structured and difficult to 
maintain. Consequently, because of the 
cumulative aspect of programming, 
which is economically rather than tech- 
nically motivated, we seem destined to 
have an environment of the new coexist- 
ing with the old and the very old. It is 
fashionable for the practitioners of the 
contemporary art to criticize the igno- 
rance and lack of discipline of their 
predecessors. It would be more fruitful 
to recognize that the new must coexist 
with and enhance the old. Successful 
techniques will be those which preserve 

The UNIX Operating System: 
A Model for Software Design 

Brian W. Kernighan and Samuel P. Morgan 

In the narrowest sense, UNIX 
time-sharing operating system, a 

is a 
pro- 

gtam that controls the resources of a 
computer and allocates them among us- 
ers. It permits programs to be run ac- 
cording to some scheduling policy, con- 
trols the peripheral devices (disks, tapes, 
printers, and the like) connected to the 
machine, and manages the long-term 
storage of information. 
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Time sharing implies (i) an environ- 
ment in which users access the system 
from terminals and (ii) a scheduling rule 
which switches rapidly among active us- 
ers, to give each a share of the processor 
in turn. Time sharing makes it possible 
for people to interact with programs as 
they execute them; by contrast, "batch 
processing" implies a regimen in which 
users have no such interaction with pro- 
grams. 

Traditionally, operating systems have 
been large, complicated programs re- 

a maximum of the value of that which 
has already been achieved. The chal- 
lenge is to become masters of the evolu- 
tion. 
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quiring years of effort to create. The 
operating system written by IBM for its 
System1360 series of computers, 0,91360, 
required more than 5000 man-years of 
development effort ( I ) .  Also, most oper- 
ating systems have been batch systems, 
with time-sharing capabilities grafted on 
after the fact (although this path is not 
universal). 

In a broader sense a system, be it 
UNIX or OSl360, is often taken to in- 
clude not only the central kernel that 
controls the hardware. but also essential 
utilities such as compilers, editors, com- 
mand languages to control the sequenc- 
ing of programs, and programs for 
manipulating files, printing information, 
and accounting for usage. A system may 
include not only all these programs, but 
also general-purpose programs devel- 
oped merely to be run on the system. 
Examples include formatters for docu- 
ment preparation, routines for statistical 
analysis, and graphics packages. 

This leads to the view that an operat- 
ing system is built layer on layer, rather 
like an onion-a metaphor that also al- 
lows for wry jokes about tears. Where 
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