
Progress in software is inevitably com-
pared with that in hardware. Usually,
software does not fare well. Impressive
curves can be drawn showing the dra-
matic improvement in processor speed
or storage capacity. In contrast, the
function provided by software not only
defies simple numeric characterization,
it also does not even have, at this point, a
useful taxonomy. Thus there are not
even practical terms in which to measure
progress. Further, for most computer
users the cost of hardware is declining
while that of software is increasing. The
declining hardware costs allow new ap-
plications to become economical, but
almost certainly new applications re-
quire new and more complex software.
Many fear that the availability of the
latter may be the gating factor in the
growth of the computer industry.

Measurement of software against
hardware is ultimately misleading, since
they have distinctly different attributes.
First, the logical complexity of the soft-
ware typically far exceeds that of the
hardware in most systems. In a large
machine, performing commercial appli-
cations, programs comprising a total of
more than 10' lines of code must work in
tight relationship with each other. This
number far exceeds the number of cir-
cuits in the central processing unit.
While the hardware must execute the
movement of data to and from external
storage, the software is responsible for
the placement and logical structure of
those data. Again, in a large system it is
not unusual to find the software respon-
sible for more than 1012 bits of informa-
tion. By any measure, the design and
management of large software systems
are among the most complex tasks ever
undertaken.

A second distinction between hard-
ware and software is that the latter tends
to accumulate over time, while the for-
mer is periodically totally replaced by
improved technology. Particularly in
commercial data processing applica-
tions, many of the most economically
valuable tasks were programmed in the
1950's and 1960's. Over the years, these

SCIENCE, VOL. 215, 12 FEBRUARY 1982

Software
Glenn Bacon

programs have been significantly en-
hanced and continuously maintained,
but it is usually the exception that they
have been totally rewritten in modern,
structured, and well-documented ap-
proaches. The decreases in cost and
gains in performance of hardware have
made this tactic pragmatic, since hard-
ware capabilities have been able to keep
up with the throughput requirement
growth of the applications. Thus it is not
uncommon to find such critical tasks
implemented in old, poorly structured,
and difficult to maintain code. The total
replacement value of these programs is

of the work associated with designing the
software is in reality systematizing and
designing the task that the user requires.
This must be done before the software
can be designed. As I will discuss later,
the technology for defining the require-
ments for a software system is an area in
most urgent need of improvement and
itself constitutes a major portion of the
so-called software bottleneck. The tech-
nology for designing and implementing
software, once the requirements are well
defined, is in far better shape.

It is these three attributes-complex-
ity, accumulation, and the need for sys-
tematization-that give software its
unique and sometimes unenviable char-
acteristics.

Status

Software has traditionally been cate-
gorized as either system or application.
System programming is normally provid-
ed by hardware manufacturers or soft-
ware houses for the purpose of making
application writing and execution easier.

Summary. Two principal themes are observed in software development, both
aimed at improving the productivity of developing and maintaining new applications.
The first is to provide increasingly rich system programming function in order to
handle the details of managing hardware resources. The second is to provide
application development facilities with logical structures and building blocks more
closely aligned with the logic of the application itself. An additional challenge is to
provide these in a way that will allow continued enhancement of existing software.

in the tens of billions of dollars (1). But
more important, the continuing mainte-
nance and restructuring that they require
consume a significant programming re-
source.

The third critical difference between
hardware and software is that the latter
has a much more detailed involvement in
the work of the person or institution that
it serves. The effects of hardware are
largely confined to the data processing
department or to a terminal or personal
computer on the desk of the user. The
logic of the software, on the other hand,
is intimately involved in the procedures
and work flow of the user. Early soft-
ware was focused on procedures that
were already systematized. These proce-
dures included conventional business
and management applications as well as
scientific applications for which compu-
tational algorithms had been established.
The easy applications have been pro-
grammed. Contemporary software work,
consequently, usually involves the es-
tablishment of new tasks or procedures
that did not previously exist. Thus, much

Thus a useful way to examine the history
and status of software is to focus on the
growing role of system software and the
increasing productivity in the task of
constructing applications.

Figure 1 shows the principal forces in
the changing role of system program-
ming. The expanding "horn" represents
the increasing variety of function offered
as one moves from the hardware instruc-
tion set toward the end-user set. The
boundary below the system software,
defined by hardware and microcode, has
moved up as hardware technology has
improved. In early computers the func-
tion provided by the hardware was prim-
itive, and the system software had many
low-level responsibilities. For example,
several early machines had working
memories involving delay lines or mag-
netic drums, a slow-access serial work-
ing memory. The performance of pro-
grams could vary drastically (or cata-
strophically), depending on how long the

The author is director of the Santa Teresa Labora-
tory, International Business Machines Corporation,
San Jose, California 95150.

0036-807518210212-0775$01.00/0 Copyright O 1982 AAAS 775

processing unit would wait for the next
logical instruction to arrive at the end of
the delay line or at the drum reading
head so that it could be accessed and
executed. Thus the proper positioning of
instructions throughout the memory re-
quired a complex assignment based on
an estimation of the execution time be-
tween instructions and possible branch-
ing effects. System programming man-
aged that detail for the user.

The principal software component for
managing hardware detail is the operat-
ing system. These systems began to
emerge in the 1950's but were not in
broad application until the early 1960's.
Operating system software was written
to manage the details of moving data to
and from storage or into and out of
telecommunications lines and other pe-
ripheral devices. It was extended to take
the responsibility for scheduling work
and allocating access to critical compo-
nents such as multiple processing units
and memory. Much complexity was still
presented to the application programmer
in early operating systems because the
cost of hardware required user decisions
to achieve its best utilization. Simplifica-
tion is achieved through increasingly
more sophisticated system software and
microcode that would previously have
been uneconomical to execute. A design
such as the IBM Systeml38, which es-
sentially eliminates the task of managing
storage, exem~lifies this direction.

Since users of large systems cannot
accommodate major changes in the pro-
gramming that executes their applica-
tions, continuous evolutionary restruc-
turing of operating systems is one of the
major facts of the software environment.
The evolutionary step to achieve this
might be characterized as a maintenance
step and might be lamented as unproduc-
tive. Such a characterization would miss
the point of one of the major challenges
before us. Hardware advances and sys-
tem growth will continue to invalidate
initial software design trade-offs. We
must therefore work to improve our ef-
fectiveness in the required restructuring
work.

Application Development Productivity

The other direction of growth for sys-
tem software is toward the user rather
than the hardware. In this case, the work
is associated with the logic of the appli-
cation rather than the physical character-
istics of the hardware. This corresponds
to the movement of the upper boundary
in Fig. 1. The principal carrier of this
theme has been the area of programming
language. The earliest assistance in this

area was provided by assemblers, which
took over the details of assigning instruc-
tions and data to specific hardware mem-
ory locations, thus allowing the program
writer to use symbolic terms for these
elements. This was followed in the
1950's by the emergence of higher level
languages. These not only incorporated
the capabilities of assemblers but, more
important, greatly increased the logical
power of the instruction set for the appli-
cation writer. Operations involving com-
plex algebraic expressions could then be
expressed as a single language instruc-
tion. The language software would then
"compile" each such instruction to a
larger number of machine language in-
structions.

Many such languages were developed
in the late 1950's and 1960's, with their
command sets styled to suit particular
areas of application in business, text
handling, and scientific computation.
Several attempts were made to design
"universal" languages in the hope that
the proliferation might be ended. These
efforts have yielded popular, but far
from universal, languages such as PLII,
ALGOL, and APL. Claims to universali-
ty are not often made at this time. Fur-
ther, there is growing argument that lan-
guages with too rich a structure, which
attempt to do too much, may be overly
complex and thus error-prone (2).

There seems to be substantial evi-
dence that program writers are reluctant
to change from a language in which they
have become productive even though
new languages may be demonstrably su-
perior. The strongest evidence for this is
that the preponderance of code being
written today is in the old languages of
COBOL and FORTRAN. Thus the rate
of change of language usage may be
more appropriately measured in genera-
tions of people than in generations of
software development.

Database software provides logical ca-
pabilities that are comparable in impor-
tance to languages. Especially in com-
mercial applications, the interrelation-
ship among data elements can become
extremely complex. These data elements
and their interrelationships represent a
model of the business or technical pro-
cess that the computer is assisting in
managing. Given the continuous change
of the data elements and their interrela-
tionships as external reality changes, the
management of data constitutes a signifi-
cant portion of the entire programming
task. It is the job of database software to
remove this work from the application
program and present to that program
consistent and well-maintained views of
the data. In addition, these systems
share with the operating system the man-

agement of the logistics associated with
recovering the database from hardware
and software failures and the manage-
ment of both on-line and off-line storage
space.

As with languages, there are many
logical approaches to the structuring of
data. Again, the search for universals
has not been productive, since different
types of usage favor different logical
interfaces. This area itself has become
one of the principal elements of comput-
er science (3) and is summarized by
Blasgen (4) in this issue.

If one is willing to specialize the types
of application programs that may be
written, programming systems with sig-
nificantly higher logical levels can be
provided. An example of these facilities
is the class of application generators. An
early application generator was the re-
port program generator (RPG) language,
which provides powerful and easy-to-use
capabilities for producing simple busi-
ness reports. Some of these languages
now provide facilities that greatly aid the
construction of terminal screen formats
and writing of complex commercial
transactions. They also simplify applica-
tion maintenance by helping to isolate
changing data and business procedures
from the overall program control struc-
ture. Claims of productivity improve-
ments exceeding a factor of 10 over
conventional languages such as COBOL
are repeatedly made.

"What" versus "How"

Beyond such systems are the nonpro-
cedural query languages. These allow a
user with little programming knowledge
to access complex data structures and,
further, to request relationships among
those data which were not previously
structured by a database administrator.
These best exemplify the theme of re-
moving work from the application writer
by allowing him to state "what" is want-
ed rather than to specify "how" the
computer is to achieve it. In this case,
the goal is to eliminate the intermediary
application programmer entirely.

In terms of eliminating bottlenecks,
the major challenge facing software de-
velopers is that of providing powerful
computing facilities for the general pub-
lic. Most people are not at all interested
in mastering the arcane discipline of
computer programming. Not only does
the what as contrasted to the how ap-
proach seem necessary to serve them,
but the tasks that the computer is to
undertake must be described to the user
in terms which are immediately meaning-
ful in his environment-not those which

are simplest for the computer. A system
such as the Xerox STAR professional
work station is an example of such a
direction. The work elements (such as
letters and files) and the tasks (such as
creating, routing, and storing) are pre-
sented to the user in pictorial form. The
logic of the user's application can be
largely achieved by pointing at the tasks
and the data elements in order to proper-
ly interrelate them. It is expected that
systems of this sort will emerge in an
increasing variety of specialized end-
user environments.

This trend is still another manifesta-
tion of the lack of a single universal
approach to programming computers.
Since the work that computers do will be
driven by the virtually uncountable num-
ber of tasks that humans may want to
undertake, one begins to see why it is so
difficult to develop a taxonomy of com-
puter software at any but the most primi-
tive logical levels. The top of the horn in
Fig. 1 will expand indefinitely.

It might be necessary first to achieve a
taxonomy of human tasks, an endeavor
that has not yet yielded substantial re-
sults. Practical results are emerging in
business data processing, however. Carl-
son and Kerner (5) have demonstrated
the practical application of Donald Ber-
stine's business information analysis and
integration technique (BIAT). Bernstine
has shown that a large class of applica-
tions can be mapped into a useful struc-
ture by the yeslno answers to seven
questions. Questions such as "Is the
product paid for at delivery or billed
later?" or "Is the product rented or
purchased?" yield a structure for the
required data system.

Without a more general approach, the
specification of user applications is still
very much in the realm of art and inven-
tion. However, once that design require-
ment is stated, an increasingly power-
ful base of software engineering technol-
ogy is available to aid in its implementa-
tion.

Software Production

Most computer users find it far more
economical to purchase or lease soft-
ware packages that are already written
for their applications than to develop
them in-house. At this time, there are
more than 6000 products commercially
available for minicomputers and larger
systems, along with an unknown but
rapidly increasing number of offerings
for personal computers. Despite this
large inventory, most medium and larger
facilities also do a great deal of custom
programming for unique applications or

Increased

T productivity

New business offerings

Applications Application development

Fig. 1. Growth of program- software
productivity

ming function. New system structure

System software 1 /

Hardware and
microcode

continuing maintenance of old code.
Thus, both for a very large number of
computer users and for the producers of
commercial packages themselves, the
technology for improved software pro-
duction is of critical importance.

Like any process that has undergone
systematic refinement, software produc-
tion has been divided into increasingly
specialized and differentiated tasks. Pro-
gramming in the 1950's involved little
planning. At most, a flow chart outlining
the major logical structure was prepared.
One then began coding through the flow
chart, designing and debugging each of
the principal paths. Since machine re-
sources were expensive, good code was
regarded as that which was most tightly
written, and cleverness in exploiting ev-
ery last logical element of the instruction
set was clearly to be admired. While
many of the programs written in this
fashion achieved their objectives, funda-
mental problems soon became apparent:

1) Such programs were difficult to
handle by more than one person. Essen-
tially, there was no approach to parti-
tioning the task so that several people
could cooperate and still maintain over-
all logical cohesion.

2) The overall task that the program
was to achieve was usually understood
only by the programmer. If the user
was to be another person or group, there
was often much frustration and disagree-
ment over what was to be achieved due
to lack of precision in stating the require-
ment.

3) Probably the most critical problem
was that the program had poor structure;
logically, it resembled a bowl of spaghet-
ti as contrasted to a set of building blocks
with well-defined interfaces. If the pro-
gram was to be enhanced or maintained
by others, this attribute was most harm-
ful since small changes in the code could
have significant and unpredictable ef-
fects as they propagated throughout the
tightly coupled structure.

The limitations of this approach to
programming became graphically clear
when large projects were undertaken
which contained many programs inter-

Lower cost technology
improved architecture

acting with each other. Although there
were many such efforts in the early
1960's, the most notable was the devel-
opment of OS1360, the operating system
for the IBM System1360 computers. This
development, which has been chronicled
by Brooks (6), clearly demonstrated the
necessity for design and management
cohesion in large projects. The principal
lesson was that the tasks of requirements
definition and design should be clearly
separated from coding. For manage-
ment, the difficult lesson was that adding
more people to the latter stages of a
project that is falling behind is likely to
add further delay because of their lack of
knowledge of design detail.

By the late 1960's, work in mathemat-
ics and computer science began to pro-
duce practical guidance for program-
ming. Dijkstra (7) stressed the impor-
tance of the program as a medium of
communication. The flow of the program
during its execution should closely
match the structure of the application
task. Not only would this aid others who
must understand the intent behind the
program, it would also guide the designer
in accurately and completely represent-
ing the application. Dijkstra identified
program constructs that would facilitate
achieving this similarity in structure be-
tween programming and the require-
ment. He further argued that indiscrimi-
nate use of the popular GOT0 instruc-
tion, which would cause unexplained
breaks in the program flow, was counter
to this objective.

Hoare (8), following the work of Floyd
(9), provided complementary guidance
by demonstrating properties of program-
ming languages that help eliminate com-
mon coding errors. These allow the lan-
guage to enforce assertions about the
range and other properties of variables
and provide a formal approach to mathe-
matically verifying that the program
matches the intent of the designer. Lan-
guages such as PASCAL and the lan-
guage ADA proposed by the U.S. De-
partment of Defense have incorporated
much of this thinking.

These foundations were soon supple-

mented by further design and manage-
ment techniaues to form the field of
software engineering and the particular
discipline of structured programming
(10). It has become common practice to
partition large programs into-functional
modules (11) with a disciplined interface
structure between them, along with tech-
niques to formally review designs and
inspect code (12). Most established pro-
gramming organizations have incorpo-
rated these practices through program-
ming process guidelines (13).

An additional dimension of software
engineering is the programming environ-
ment. The environment is defined by the
set of programming tools that aid the
implementation of the process guidelines
and facilitate control of the project as it
moves through the stages of specifica-
tion, design, coding, testing, and mainte-
nance. These tools and the computing
resource that they require are the princi-
pal form of capital investment for im-
proving the productivity of program-
ming. Modern operating systems such as
UNIX, described by Kernighan and
Morgan (14) in this issue, were designed
with the entire environment in mind and
include concepts such as the program-
mer's workbench (IS) , a coordinated set
of tools.

A major current effort is the design of
the environment associated with the
ADA language. The purpose is to im-
prove the quality and productivity of the
massive amount of programming re-
quired by the Department of Defense for
so-called embedded applications. The
"Stoneman" proposal for an environ-
ment consisting of a database, debug-
ging tools, code contol mechanism, and
so on (16) has been developed essentially
in parallel with the "Steelman" proposal
for the language itself.

Many problems with programming still
exist. This is particularly true in the area
of very complex designs. Deceptively
simple requirements carried through the
stages of specification and detailed de-
sign can virtually explode in terms of
required function. Thus reliable cost and
schedule commitments cannot be made
until the early stages of the design pro-
cess have been completed. If those costs
are unacceptable, a considerable amount
of effort may have to be abandoned.
Usually, there is a fundamental renegoti-
ation of the requirement, eliminating ex-
cessively costly function. One of the
most critical needs in the field is the
establishment of metrics that can assess
requirements and give reasonable pre-
dictions of implementation costs. Work
on such metrics is still far from yielding
practical results (1 7).

Research Directions

The overall goals of research in pro-
gramming methodology are to improve
the productivity of producing and main-
taining the program and to improve the
quality in terms of an error-free manifes-
tation of the original requirement for the
program. This goal has led to an increas-
ing focus on the early stages of the
programming process. It has been shown
that an error detected at the beginning of
the cycle may be two orders of magni-
tude cheaper to remove than one found
in actual production (13). It is further a
reliable generalization that quality is
achieved in the design and implementa-
tion of the program; it cannot be ac-
quired simply through debugging. Sever-
al of the key research approaches are
reviewed below.

Research in programming transforma-
tion is aimed directly at these goals. A
very high level language is provided for
writing the specification itself with the
goal of minimizing human intervention in
transforming that specification into run-
ning code. Since the specification is sup-
posed to describe what the program is to
achieve, not how it is to be implemented,
such work really strikes at the heart of
the programming problem. As men-
tioned earlier, query languages have
achieved this result for problems involv-
ing data access and structuring. The
challenge is to incorporate increasingly
large classes of work and resolve the
what of the specification to the how of
the procedural machine code with ade-
quate efficiency. However, there will be
significant value in achieving better lan-
guages for specification, since the result-
ing structure will better automate the
means for verifying that the programs
meet the specification. The ultimate
goal, of course, is to directly compile
these programs from the higher level
specification language.

Irrespective of the level of the lan-
guage, research will continue on the
structuring of programs with the goal of
more clearly separating the different
types of tasks in an application.
Kowalski (18) argues that an algorithm
has the purpose of both defining the logic
of what is to be computed and determin-
ing how it is to be done efficiently. It
should be possible to change either of
these aspects with a minimum of impact
on the other. Current languages do not
facilitate this.

Another exciting and potentially far-
reachiqg approach derives from the tech-
nology of artificial intelligence. So-called
knowledge-based automatic program-
ming involves a dialogue between the

programmer and the system. As the pro-
grammer begins to state what must be
achieved, the system attempts to struc-
ture an overall program to meet the
requirements stated. This intermediate
result is presented to the programmer for
further elaboration or correction. The
dialogue converges when the program-
mer is convinced that the overall require-
ments are met and the system is satisfied
that it has captured sufficient detail to
resolve a complete program. So far, such
work has been successful only for small
programs (19), but in the long term it will
attack one of the most difficult issues in
programming-that of extracting precise
requirements from the user. Thus, as
with program transformation, useful re-
sults that are far short of complete auto-
mation of the programming process can
be achieved.

A different approach emerges from an
engineering paradigm. It is argued that
an appropriate inventory of "standard
parts" with appropriate interface disci-
plines between them can be the basis for
composing much more complex pro-
grams. Not only might the programs be
assembled much more quickly, but they
could be of higher quality since each of
the parts would be subject to much more
rigorous verification and testing. While
this approach has been successful in
some areas of application programming,
significant results have not yet been
achieved in more complex areas. Two
fundamental issues seem to remain. One
is to determine the right set of standard
parts. While it is probably not possible to
prove that any set of higher level parts is
optimal, a subset of commonly used
functions would represent significant
progress. A more critical issue is to
provide a system environment in which
these parts can be properly hooked to-
gether. In hardware, interfaces between
components are constrained by electrical
and physical considerations. In program-
ming, however, a new discipline is need-
ed to ensure proper interfaces between
standard components; this function has
been referred to as a funnel (20).

It is important to recognize that stan-
dard components are simply another ap-
proach to providing very high level func-
tions such as those being pursued in
program transformation research. The
goal of both is to allow the programmer
to construct his program in terms that
more naturally fit the function associated
with his problem rather than the detail
required for the machine to implement
that function.

Potentially the most elegant approach
is that embodied in functional program-
ming. Backus (21) has observed that a

SCIENCE, VOL. 215

great deal of the complexity of current
programs results from the lack of strong
algebraic properties relating the primi-
tive functions of the programming lan-
guage. He sees a need for "program
forming operations" with such proper-
ties, whose domains are themselves pro-
grams. With these, a rigorous approach
might be found for defining the charac-
teristics of new programs built from
combinations of existing ones. Backus
observes that a principal barrier to de-
signing languages with such strong prop-
erties is the von Neumann architecture
of most existing computers. He asserts
that the detailed assignment and manipu-
lation of storage which is required for
each program make it difficult to define
useful program-forming operations. The
particular choices in managing storage
for each of the programs to be composed
would probably be inconsistent.

A set of operations for composing new
programs from existing ones could have
profound implications for hardware de-
sign. The hardware instructions would
directly implement the rules for compos-
ing programs. Further, proposed func-
tional programming approaches offer the
possibility of better determining which
tasks may proceed in parallel. This
would allow better use of advances in
very large scale integration, which make
high degrees of multiprocessing most

cost-effective. While this work is still in
an early stage, it is likely to lead to one of
the most significant advances in comput-
er science in the 1980's.

Conclusions

Since active research in the software
engineering area was begun in the late
1960's, much has been accomplished.
Given stable requirements, it will be
largely a matter of skilled effort and
discipline to produce a predictable and
reliable result. However, as indicated by
the number of different and still unprov-
en approaches to new programming
methodology, this field is still very
young. Thus it is likely that a decade
hence the techniques in use today will be
considered ill-structured and difficult to
maintain. Consequently, because of the
cumulative aspect of programming,
which is economically rather than tech-
nically motivated, we seem destined to
have an environment of the new coexist-
ing with the old and the very old. It is
fashionable for the practitioners of the
contemporary art to criticize the igno-
rance and lack of discipline of their
predecessors. It would be more fruitful
to recognize that the new must coexist
with and enhance the old. Successful
techniques will be those which preserve

The UNIX Operating System:
A Model for Software Design

Brian W. Kernighan and Samuel P. Morgan

In the narrowest sense, UNIX
time-sharing operating system, a

is a
pro-

gtam that controls the resources of a
computer and allocates them among us-
ers. It permits programs to be run ac-
cording to some scheduling policy, con-
trols the peripheral devices (disks, tapes,
printers, and the like) connected to the
machine, and manages the long-term
storage of information.

The authors are members of the Computing Sci-
ence Research Center, Bell Laboratories, Murray
Hill, New Jersey 07974.

SCIENCE, VOL. 215, 12 FEBRUARY 1982

Time sharing implies (i) an environ-
ment in which users access the system
from terminals and (ii) a scheduling rule
which switches rapidly among active us-
ers, to give each a share of the processor
in turn. Time sharing makes it possible
for people to interact with programs as
they execute them; by contrast, "batch
processing" implies a regimen in which
users have no such interaction with pro-
grams.

Traditionally, operating systems have
been large, complicated programs re-

a maximum of the value of that which
has already been achieved. The chal-
lenge is to become masters of the evolu-
tion.

References and Notes

B. W. Boehm, in Research Directions in Soft-
ware Technology, P. Wegner, Ed. (MIT Press,
Cambridge. Mass., 1979), p. 44.
C. A. R. Hoare, Commun. ACM 24 (No. 2), 75
(1981).
C. J . Date, lnrroduction to Database Systems
(Addison-Wesley, Reading, Mass., ed. 3, 1981).
M. W. Blasgen, Science 215, 869 (1982).
W. M. Carlson and D. V. Kerner, Data Base 10
(No. 4), 3 (1979).
F. P. Brooks, The Mythical Man-Month: Essays
on Software Engineering (Addison-Wesley,
Reading, Mass., 1975).
E. W. Dijkstra, Commun. ACM 11 (No. 3), 147
(1960).
C. A. R. Hoare, ibid. 12 (No. lo), 576 (1969).
R. W. Floyd, Math. Aspects Comput. Sci. 19, 19
(1967).
H. D. Mills, Science 195, 1199 (1977).
M. A. Johnson, Principles of Program Design
(Academic Press, New York, 1975).
M. E. Fagen, IBM Syst. J . 15 (No. 3), 182
(1976).
H. Rkmus, in Software Engineering Environ-
ments (North-Holland, Amsterdam, 1980). p. ",-
LO/ .
B. W. Kernighan and S. P. Morgan, Science
215, 779 (1982)
T. A. Doluta, R. C. Haight, J. R. Mashey, Bell
Syst. Tech. J. 6 , 2177 (1978).
J. N. Buxton and L. E. Druffel, in Software
Engineering Environments (North-Holland,
Amsterdam, 19801, p. 319.
R. A. DeMillo and R. J. Lipton, in Software
Metrics, A. Perlis et al., Eds. (MIT Press,
Cambridge, Mass., 1981), p. 77.
R. Kowalski, Commun. ACM 22 (No. 7), 424
(1979).
M. Hammer and G. Ruth, in Research Direc-
tions in Software Technology, P. Wegner, Ed.
(MIT Press, Cambridge, Mass., 1979), p. 767.
M M. Lehman, IBM Tech Discl. Bull. (1976).
J Backus, Commun. ACM 21 (No. 8), 613
(1978).

quiring years of effort to create. The
operating system written by IBM for its
System1360 series of computers, 0,91360,
required more than 5000 man-years of
development effort (I) . Also, most oper-
ating systems have been batch systems,
with time-sharing capabilities grafted on
after the fact (although this path is not
universal).

In a broader sense a system, be it
UNIX or OSl360, is often taken to in-
clude not only the central kernel that
controls the hardware. but also essential
utilities such as compilers, editors, com-
mand languages to control the sequenc-
ing of programs, and programs for
manipulating files, printing information,
and accounting for usage. A system may
include not only all these programs, but
also general-purpose programs devel-
oped merely to be run on the system.
Examples include formatters for docu-
ment preparation, routines for statistical
analysis, and graphics packages.

This leads to the view that an operat-
ing system is built layer on layer, rather
like an onion-a metaphor that also al-
lows for wry jokes about tears. Where

0036-807518210212-0779S01.0010 Copyright (-3 1982 AAAS 779

