
from two svecimens collected in the fall 
and two in late winter. The concentra- 
tion of glycerol was calculated on the 
basis of total water content of the ex- 
tracted muscles; that is, I assumed that 
glycerol was equally distributed in intra- 
and extracellular fluid spaces. Speci- 
mens of H. versicolor collected from 
terrestrial hibernation sites in late winter 
had full urinary bladders, and samples of 
their bladder fluid also contained ap- 
proximately 0.3M glycerol (Fig. 2) .  
Specimens collected in mid-May after 
migration from upland winter sites to 
breeding ponds had no glycerol and had 
also lost their tolerance to freezing. No 
glycerol was found in muscle extracts of 
R .  pipiens or R. septentrionalis, so the 
correlation between glycerol content and 
frost tolerance was consistent both with- 
in and among species. 

I had expected that winter survival of 
terrestrial frogs would involve frost 
avoidance through deep supercooling as 
is common among insects. I found in- 
stead an examvle of survival of a verte- 
brate after extensive freezing of body 
fluids. Complete freezing of extracellular 
water is consistent with my estimate of 
35 percent of body fluid as ice (12). Frost 
tolerance is an important adaptation for 
survival of terrestrial frogs during win- 
ters of little snow when microclimate 
temperatures can easily fall below the 
supercooling point of these species. The 
occurrence of glycerol in association 
with frost tolerance suggests that this 
compound is a component of the cryo- 
protectant chemical system of these 
frogs. 
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Kollar and Fisher (I) report that grafts 
of chick epithelium to mouse molar mes- 
enchyme were induced to produce tooth 
enamel. Their experiments indicate that 
the loss of teeth in the class Aves should 
be attributed to factors other than the 
loss of genes for enamel production. We 
wish to draw attention to the profound 
implications of their results to modern 
evolutionary theory in ways not men- 
tioned by them. 

If we are to assume, as do Kollar and 
Fisher, that genes for enamel matrix 
proteins have no function in extant birds, 
and that such genes have remained unex- 
pressed since toothed birds became ex- 
tinct during the Cretaceous ( 2 ) ,  we ask: 
what is the probability that any archaic 
gene could retain function after some 70 
million years of unselected, random mu- 
tation? 

Dormant DNA in living organisms is 
not frozen in time, remaining forever 
unchanged as a preserved fossil; instead 
it is transmitted from cell to cell and 
generation to generation via the same 
replicative machinery as any other 
DNA. Mutation is a slow but ineluctable 
part of this process that generates new 
alleles which must survive the pressure 
of negative selection to persist in time. 
Allelic variants of an unexpressed locus, 
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however, are operationally neutral to the 
action of selection, and the accumulation 
of changes in wholly silent sites is 
expected to saturate after 100 million 
years (3). 

According to conventional neutralist 
theory, proteins (the products of struc- 
tural genes) evolve at a constant rate 
within the confines of selective con- 
straints imposed by function (4). That is, 
realized amino acid substitutions are 
maximal when variants at a locus are 
independent of Darwinian fitness. Of the 
proteins surveyed thus far, fibrinopep- 
tides appear to have evolved at the high- 
est rate, with an estimated nine amino 
acid substitutions per amino acid site per 
1 billion years (4). Kimura offers this 
particular example as one approaching 
selective neutrality; therefore, an equiv- 
alent expected rate for proteins of the 
resurrected bird-enamel locus is not un- 
reasonably high. Using fibrinopeptides 
as a conservative baseline for near-neu- 
tral genes, we predict that the extant and 
putatively unexpressed bird-enamel lo- 
cus would have experienced sufficient 
random mutations to effect substitutions 
at approximately 63 percent of the origi- 
nal amino acids in its protein product (5). 

While it can be argued that numerous 
differences are known to exist within 
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families of analogous proteins across 
taxa without loss of function in any, 
consider the likelihood of function in any 
if, say, more than half the amino acids 
were substituted randomly. 

In the absence of selective constraints, 
it is most unlikely that a silent gene could 
still function, or even be recognized, 
after more than 70 million years if the 
rates of protein evolution advocated by 
neutralist theorists are remotely reason- 
able. If Kollar and Fisher have uncov- 
ered a genuine phenomenon, then the 
thesis of Kimura and his colleagues re- 
quires serious revision. However, in 
view of the vast body of data upon which 
molecular evolutionary theory is based 
(4), unequivocal evidence is required to 
resolve the critical question: did chick 
cells actually make enamel matrix pro- 
tein? Until the admittedly difficult task of 
characterizing the protein as nonmurine 
is performed, and assurances offered in- 
dicating that the genes responsible for 
the protein are indeed "quiescent," the 
burden of proof weighs heavily on Kollar 
and Fisher. 
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Grant and Wiseman (I) draw attention 
to the far-reaching implications of our 
report (2), and they question whether 
quiescent genes can maintain function. 
They assume that genes for enamel pro- 
tein are present, and ask how a gene 
could retain function after 70 million 
years of unselected, random mutation. 
Grant and Wiseman impose hypothetical 
conditions on this complex problem and 
conclude that it is unlikely that unex- 
pressed genes could function or even be 
recognized if mutations had occurred at 
the rate they propose. 

Central to their argument is the con- 
tention that enamel genes have not been 
subjected to selection pressure. This 
supposition is open to question. Many 
structural, nonenzymatic proteins (for 
example, collagen and keratins) are fam- 
ilies of proteins (3) that serve various 
functions and contribute to manifold 
phenotypic expression. For example, 
keratin filaments are related to cytoskel- 
eta1 elements as well as to keratin com- 
plexes in the stratum corneum of skin. 
Selection is a complex interaction im- 
pinging on many phenotypic traits. Thus, 
a family of proteins may be subject to 
selective pressure even if one aspect of 
their function is lost as a consequence of 
developmental alteration. Little is gained 
from speculating about loss of function 
or about the extent of alteration in enam- 
el protein because how these molecules 
function is not known. However, there is 
no evidence that they act enzymatically; 
in fact, they seem to function as a ma- 
trix. If so they could tolerate substantial 
amino acid substitutions before function 
is severely diminished. 

For their argument, Grant and Wise- 
man chose fibrinopeptides as an example 
of proteins that mutate rapidly. But they 
overlook the significant observation (4) 
that enamel protein derived from fish to 
mammals cross-reacts immunologically. 
Immunological cross-reactivity suggests 
(i) that homologies exist in these mole- 
cules throughout the vertebrates; (ii) that 

there is probably less than a 40 percent 
difference between the proteins; and, 
thus, (iii) that the proteins are highly 
conserved. If Grant and Wiseman based 
their calculations on the mutation rates 
of more highly conserved proteins such 
as cytochrome c ,  collagen, or the histone 
H4, their calculations would not have 
supported their argument. In addition, 
since enamel protein functions, the anal- 
ogy with functionless fibrinopeptides is 
inappropriate. Very little is known about 
the molecular composition of enamel 
protein, or whether this is a group or 
family of proteins. 

Relatedness of protein families, ever- 
increasing complexity of gene loci, and 
the importance of developmental con- 
trols of gene expression (5) all argue for a 
more sophisticated view of genetics, 
evolutionary theory, and developmental 
analysis. We believe that the validity of 
our findings can best be assessed by the 
presentation of experimental data, rather 
than by hypothetical arguments. We 
look forward to new experimental data 
that bear on this question. 
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