
side compartments, or whether neurons 
with this capability retained their respon- 
siveness to NGF. Although reintroduc- 
tion of NGF into a side compartment 
after 29 days of deprivation resulted in 
resumption of neurite advance (Fig. 2b), 
the neurites of a subpopulation of neu- 
rons capable of surviving but not elon- 
gating during NGF deprivation could 
have been responsible for this. Neurites 
of the hypothetical subpopulation could 
have been present just out of sight under 
the barrier in the side compartment, 
where exposure to reintroduced NGF 
could have caused their growth to re- 
sume. The 1- to 2-day lag between addi- 
tion of NGF and resumption of neurite 
advance would have been sufficient for 
these neurites to overtake and pass the 
previous growth. Thus, neurons capable 
of regenerating neurites during NGF de- 
privation may not, in fact, be responsive 
to NGF. 

Alternatively, neurites of mature sym- 
pathetic neurons may be capable of limit- 
ed regeneration in the absence of NGF, 
but full regeneration may require rees- 
tablishment of contact with an NGF sup- 
ply. Postganglionic axotomy results in 
irreversible atrophy of the superior cer- 
vical ganglia when performed in rats 
before the 12th postnatal day (11). This 
atrophy was preventable by a period of 
intravenous administration of NGF 
(there was functional recovery of the 
innervation), but axotomy carried out 
after 3 weeks of age was followed by 
reinnervation without the aid of exoge- 
nous NGF. The timing of the appearance 
of the unaided, regenerative capability is 
well correlated with my observation of 
regeneration in NGF-deprived neurons 
maintained 1 month or more in culture. 
Taken together, the results suggest that 
NGF-independent neurite regeneration 
may be a first, crucial stage in the rees- 
tablishment of sympathetic innervation 
after peripheral nerve damage in the 
adult rat. This capability may develop 
independent of any direct postnatal influ- 
ences by nonneuronal cells. 

A second stage of regeneration, as 
well as long-term maintenance of the 
neurons, may require reestablishment of 
contact with an NGF source-perhaps 
the tissues to be reinnervated. Interest- 
ingly, NGF production by the iris is 
stimulated by denervation (12), and truly 
long-term survival of sympathetic neu- 
rons may require NGF, even in the in- 
tact, adult sympathetic nervous system 
(4). 

ROBERT B. CAMPENOT 
Section of Neurobiology and Behavior, 
Cornell University, 
Ithaca, New York 14850 
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Brain Aging Correlates: Retardation by 
Hormonal-Pharmacological Treatments 

Abstract. Mid-aged rats were either adrenalectomized and chronically main- 
tained, or left intact and treated daily for a 9- to 10-month period with a potent 
analog of the peptide adrenocorticotropin (residues 4 to 9),  which has some 
stimulant properties, or with the neural stimulant pentylenetetrazole. All three 
treatments reduced hippocampal morphologic correlates of brain aging (neuronal 
loss, glial reactivity). The pentylenetetrazole and peptide treatments also improved 
reversal learning. These results suggest that certain endogenous peptides, with 
stimulant properties, may also exert long-term, trophic effects or  brain structure and 
function. 

Little is known about the etiological 
factors that influence the rate of brain 
aging, although research on possible 
causes of senile dementia or normal 
brain aging (or both) is currently focused 
on cerebrovascular processes, slow vi- 
ruses, immune reactions, toxic metals, 
and genetic mechanisms (1). Additional- 
ly, we have been pursuing the hypothesis 
that endocrine factors, particularly glu- 
cocorticoids, may normally accelerate 
some aspects of brain aging (2). Our 
prior studies have so far yielded data 
consistent with predictions of that hy- 
pothesis (2), and other studies have im- 
plicated elevated corticoids in age-like 
cardiovascular decline (3). However, 
clear evidence of retarded brain aging 
also seems needed to test a hypothesis of 
causal factors in normal brain aging. We 
recently reported, in preliminary form, 
that long-term adrenalectomy does re- 
duce some morphologic correlates of 
aging in the rat hippocampus (4) [which 
is rich in corticosterone receptors (5)]. 

Adrenalectomy not only lowers corti- 
coids, however, but also results in wide- 
spread changes in endocrine-metabolic 
measurements. Among the major conse- 
quences of adrenalectomy, of course, is 
an elevation in adrenocorticotropic hor- 
mone (ACTH), which exerts direct be- 
havioral and biochemical actions on the 
brain (6); moreover, ACTH and its non- 

steroidogenic, brain-active fragments 
(for example, ACTH residues 4 to 10) 
induce electrophysiological patterns sim- 
ilar to those of neural stimulants (7). It 
therefore seemed feasible that the pro- 
longed neural stimulation resulting from 
elevated ACTH, rather than the reduc- 
tion in steroids per se, could be largely 
responsible for the retardant action of 
adrenalectomy on brain aging (possibly 
by maintaining neuronal metabolism). In 
this study, we examined these possibili- 
ties. 

We now report that long-term treat- 
ment of rats with a neural stimulant, 
pentylenetetrazole (PTZ), or with a po- 
tent and behaviorally active analog of 
the ACTH[4-91 molecule (ORG 2766), 
which does not affect glucocorticoid re- 
lease (8), can retard the development of 
both some neuromorphologic and some 
behavioral correlates of brain aging in 
rats. We also report that the long-term 
absence of the adrenal glands has effects 
on brain aging correlates different from 
those of ORG 2766 and PTZ. These 
studies, then, suggest that peptides, as 
well as steroids, can influence brain ag- 
ing and that stimulation may be an im- 
portant element in these effects. 

We used a number of established mor- 
phometric correlates to quantify the de- 
gree of hippocampal aging. Neuronal 
loss, lipofuscin, and glial reactivity have 
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been reported to be consistent correlates 

Fig. 1.  Examples of CAI pyramidal cells in the soma layer in semithin sections from young rats 
(A), aged controls (B), and aged rats adrenalectomized 9 months earlier (C). All sections are cut 
perpendicular to the soma1 layer, from the CAI region just dorsal to the tip of the dorsal limb of 
the dentate gyms granule cells. Neuronal nuclei and major glial species can be recognized- 
astrocytes with lucent cytoplasm (arrowheads) and the darker microglia and oligodendrocytes, 
with chromatin clumps in the nucleus (double arrowheads) [compare with (17)]. 

of brain aging in humans, monkeys, 
dogs, and rodents (9). Morphologic cor- 
relates were assessed in semithin sec- 
tions. We recently described the appear- 
ance and quantification of these varia- 
bles in semithin sections of aged rat 
hippocampus in some detail (10). In addi- 
tion, we noted that neuronal nuclei sub- 
jectively appear "rounder" in younger 
rats, and we therefore also assessed nu- 
clear roundness as a means of obtaining 
another neuronal (as opposed to glial) 
measure (11). Since many behavioral 
changes, including apparent memory de- 
cline, develop in aging humans, mon- 
keys, and rodents (12), we also incorpo- 
rated behavioral measures into our as- 
sessment of brain aging. Rats exhibit 
age-related deficits in complex maze 
tasks, particularly when trials are tempo- 
rally spaced or when reversal paradigms 
are included (12). We used a task incor- 
porating these features to assess per- 
formance in our animals (13). 

Male inbred Fischer rats 16 months 
old (cesarean-derived, barrier-reared, 
from the Charles River colony of the 
National Institute on Aging) were divid- 
ed into three groups, matched for mean 
weights and open-field activity. The 
groups received subcutaneous injections 
of ORG 2766 (N = 12), PTZ (N = 12), 
or appropriate vehicle (N = 14), once 
each day, five times a week, for 8.5 
months (14). Drugs were then withheld 
beginning 1 week before the onset of 
behavioral tests, and for their duration 
(lasting - 2.5 weeks); drugs were there- 
after continued for an additional 1.5 
months, at which point all animals were 
killed. An additional (untreated) aged 
control group (N = 14) with the same 
birth date was obtained 5 months after 
the experiment began and was then con- 
currently maintained until the end of the 
studv. Since the vehicle and untreated 
aged control groups were essentially 
identical on every variable measured, 
they were combined into one aged con- 
trol group for statistical purposes. Nine- 
teen other animals with the same birth 
date were adrenalectomized at 18 
months of age and were maintained con- 
currently for 9 months on a 1 percent 
NaCl drinking solution, which included 5 
pg of cortisol per milliliter as replace- 
ment glucocorticoid (14). A young-ma- 
ture control group (N = 11) was also 
obtained 5 months after the experiment 
began. Precautions against infection 
were maintained throughout the study 
(15). All aged animals were 27 months 
old, and the young-mature control group 
was 8 months old, when the study ended. 
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Due to attrition from natural causes, 
from inadequate perfusion, or from a 
sudden death syndrome (possibly hypo- 
glycemia) in adrenalectomized animals 
that otherwise appeared healthy, the fi- 
nal group sizes during the behavioral 
tests were: aged controls, 20 animals; 
ORG 2766, 10; PTZ, 10; adrenalecto- 
mized 11 ; young-mature, 11. For mor- 
phologic analyses the final group sizes 
were: aged controls, 17 (vehicle, 7; un- 
treated, 10); ORG 2766, 8; PTZ, 8; adre- 
nalectomized, 8; and young, 11. At the 
end of the 11-month study, rats were 
anesthetized with ether; beginning 5 min- 
utes after the start of anesthesia, 3 to 5 
ml of blood was withdrawn from the 
abdominal aorta of each rat for hormonal 
and electrolyte analysis (16). Animals 
were then quickly perfused through the 
heart with mixed aldehyde solutions, and 
brains were prepared for semithin sec- 
tions. Quantitative light microscopic 
analyses were performed blind and 
checked by a second investigator (10, 
11). 

Most adrenalectomized animals re- 
sembled the young animals on morpho- 
logic variables (Fig. I), but two adrenal- 
ectomized animals exhibited consider- 
able evidence of brain aging (for exam- 
ple, they scored above the median for 
aged controls on the brain aging index). 
The appearance of drug-treated animals 
was intermediate in pattern between 
young and aged controls. As shown in 
Fig. 2, on every morphologic measure 
except lipofuscin (Fig. 2D) the three ex- 
perimental groups were more similar to 
the young-mature groups than aged con- 
trols were. Because of variance, differ- 
ences on some variables were not signifi- 
cant (.05 < P < .lo). Nevertheless, 
when combined in a composite index 
these variables also contribute to the 
degree of difference from aged controls 
(Fig. 2G). Young animals and the drug 
groups performed significantly better 
than aged controls did on the maze re- 
versal task, as measured by latency val- 
ues (which are increased by incorrect or 
uncertain responses) (Fig. 2A). Analysis 
of data on correct choices yielded similar 
results (13). Adrenalectomized animals 
did not perform better than aged controls 
despite morphologic evidence of reduced 
brain age. However, plasma analyses 
revealed a wide spectrum of endocrine- 
physiologic disturbances in the adrenal- 
ectomized animals (16), and one of these 
side effects may acutely decrease maze 
performance and thereby counteract any 
long-term effects of adrenalectomy on 
neurobiologic structure. Since group dif- 
ferences in behavior were found only on 

the reversal phase, the age and drug 
effects cannot be ascribed to obvious 
performance variables (such as sensory- 
motor functions or pain threshold) and 
may reflect changes in information pro- 
cessing or storage systems or in per- 
severation (12). Drug treatments were 
withheld beginning 1 week before the 
behavioral trials; because the metabo- 
lism of these agents is complete by 24 
hours (8, 14), the drugs could not have 
affected maze performance by an acute 
action. Therefore, long-term drug treat- 
ment seems to have induced a prolonged 
change in the structure or physiology of 
the brain (or both), allowing aged rats to 
perform more like the young. 

Our findings suggest that the feed- 
back-dependent increase of ACTH (16) 
may account for some of the effects of 
adrenalectomy on brain correlates of 
age, since administration of the ORG 

2766 peptide retarded brain aging indices 
in the absence of any alteration of ste- 
roids (16). However, the profile of the 
ORG 2766 effect was not the same as that 
of adrenalectomy; that is, some adrenal- 
ectomized animals exhibited substantial- 
ly less evidence of brain aging than any 
of the ORG 2766-treated animals. There- 
fore, reduction of steroids seems to have 
contributed to the retardation of brain 
aging correlates, and steroids may exert 
actions partially opposing those of pep- 
tides. The similarity of the effects of 
ORG 2766 and PTZ on brain morphology 
and behavior suggests that these drug 
treatments may both have acted by the 
common mechanism of neural stimula- 
tion, particularly since ACTH and its 
fragments have stimulant properties (7). 
These data also raise the possibility that 
certain endogenous peptides with stimu- 
lant properties may exert trophic, long- 
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Fig. 2. Means (+. standard errors of the means) of behavioral and morphologic variables. (A) 
The age-dependent behavioral impairment, indicated by elevated latency, is confined to the 
reversal phase. Both drug groups, but not the adrenalectomized animals, performed significant- 
ly better than aged controls. (G)  Composite index incorporating variables shown individually in 
(B, C, E, and F) (11). Because the PTZ and ORG 2766 groups exhibited similar profiles and 
were not statistically different on any variable, and because the two drugs are proposed to act 
by a similar mechanism, these two groups were combined for statistical analyses on the 
individual morphologic variables (but not on behavioral measures or on the composite index). 
Each group is still significantly different from aged controls when groups are not combined, at 
the next level of significance below that shown. Significance level of difference from aged 
controls: **P < .01, * P  < .05; (two-tailed). 
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term effects on brain structure and func- 
tion. The relative balance between long- 
term peptide and steroid hormonal ef- 
fects could be important influences on 
the rate of vertebrate brain aging. 

P. W. LANDFIELD 
R. K. BASKIN 
T. A. PITLER 

Department of Physiology and 
Pharmacology, Bowman Gray School 
of Medicine, Winston-Salem, 
North Carolina 27103 
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