
F-2 area (P  < .01 for both correlations). 
Increased PDH activity results from a 

decreased phosphorylation o f  the en- 
zyme (11); we have demonstrated this 
relationship in the brain (12). With pre- 
cautions taken to preserve the phospho- 
rylation in vivo and the enzyme activity 
state (7, 8),  increased phosphorylation o f  
PDH (band F-2) in vitro in trained ani- 
mals reflects a reduced phosphorylation 
of  PDH in vivo. W e  conclude that the 
training-induced increase in frontal cor- 
tex PDH activity occurs after a dephos- 
phorylation o f  PDH in vivo. 

Training-induced alterations in brain 
PDH may regulate synaptic function. 
This could involve synthesis o f  transmit- 
ters such as acetylcholine (via acetyl 
coenzyme A )  and glutamate (via the tri- 
carboxylic acid cycle) (13) in response to 
synaptic activation after repetitive stim- 
ulation (14). Moreover, insulin, which is 
localized to presynaptic terminals (15), 
can induce an increase in PDH activity 
(16), by stimulating PDH phosphatase 
through a peptide intermediary (17). It is 
possible that such peptide second mes- 
sengers alter the brain PDH activity ob- 
served 24 hours after training (3). 

These considerations suggest that 
brain PDH, through a phosphorylation- 
dephosphorylation cycle, is sensitive to 
manipulations o f  brain activity and may 
initiate or participate in the biochemical 
response o f  the cells involved in the 
neuronal plasticity o f  learning and mem- 
ory (18). 
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Questions About Spatial Adaptation of Short-Wavelength 

Pathways in Humans 

Stromeyer et al. ( I )  have reported 
color-selective spatial adaptation o f  the 
blue-sensitive visual pathway. They 
found that a violet adapting grating su- 
perposed on a circular yellow-green 
adapting field o f  uniform luminance de- 
creased the detectability o f  violet (but 
not o f  red) test gratings o f  the same 
orientation and spatial frequency. This 
effect was strongly monocular. They 
tested two subjects under dichoptic con- 
ditions, one with alternating adapting 
and test gratings and the other with a 
continuously presented adapting grating. 
The first subject showed only slight (less 
than 10 percent) interocular transfer and 
the second showed none. 

Stromeyer et al.'s study contains a 
flaw with regard to postreceptoral adap- 
tation. Specifically, their subjects fixated 
the adapting field (presumably at its cen- 
ter, since no explicit fixation target is 
described) (2). This procedure almost 
certainly produced substantial patterned 
adaptation o f  the short-wavelength 
cones themselves (3). Such adaptation is 
expected to be selective for wavelength, 
spatial frequency, and orientation, just 
as Stromeyer et al,  found. 

The dichoptic results cannot be fully 
explained by either local retinal adapta- 
tion, which is strictly monocular, or by 
cortical spatial adaptation, which pre- 
dicts strong interocular transfer. An al- 
ternative hypothesis is that the negative 

afterimage of  the adapting grating in the 
alternating grating condition raised the 
test grating threshold by means o f  di- 
choptic opponent color cancellation (4). 
Under this hypothesis, the other subject 
would not have seen a comparable effect 
because the continuous adapting grating 
produced no negative afterimage. 

Retinal adaptation, unlike central ad- 
aptation (53, depends on the relative spa- 
tial phases o f  the test and adapting grat- 
ings. Stromeyer et al. could therefore 
have checked for retinal artifacts by 
shifting the phase o f  the test grating by ,  
say, 180". Their figure 1, however, sug- 
gests that they used only test and adapt- 
ing gratings o f  equal phase, the condition 
expected to produce the maximum reti- 
nal effect. 

Whereas color-sensitive spatial adap- 
tation o f  central visual pathways remains 
possible, Stromeyer et al.'s results can 
be easily explained without it. 

BRUCE DRUM 
Department of Ophthalmology, 
George Washington University, 
Washington, D.C.  20037 

References and Notes 

1. C. F. Stromeyer 111, R. E. Kronauer, J .  C. 
Madsen, M. A. Cohen, Science 207, 555 (1980). 

2. Long-term fixation accuracy is expected to be 
only slightly better for an optimal fixation target 
than for the center of the 4" diameter adapting 
field used by Stromeyer et al. [J. D. Rattle, Opt. 
Acta 16, 183 (1969)I. 

3. L.  E. Arend, Jr., and A. A. Skavenski [Vision 
Res. 19, 1413 (1979)l have shown that even 

0036-807518111023-0471$01.0010 Copyright 0 1981 AAAS 47 1 



when subjects purposely try to avoid patterned 
retinal adaptation by scanning their eyes as 
randomly as possible over an adapting grating, 
the total exposure is equivalent to that from a 
stabilized grating of 12 to 25 times its threshold 
contrast. Although Stromeyer et  al.'s fixation 
technique did not eliminate all eye movements, 
it nevertheless must have produced much 
stronger retinal adaptation patterns than Arend 
and Skavenski's scanning technique. 

4. G. L.  Trick and S. L. Guth [J .  Opt. Soc. Am. 68, 
1438 (1978)I and Ch. M. M. de Weert and W .  J .  
M. Levelt [Vision Res. 16, 1077 (1976)l have 
provided evidence that dichoptic color cancella- 
tion can reduce brightness. 

5. R. M. Jones and U. Tulunay-Keesey, J .  Opt. 
Soc. Am. 70, 66 (1980). 

1 February 1980; revised 28 October 1980 

W e  previously observed that pro- 
longed adaptation to a vertical violet 
grating that was detected by the short- 
wavelength ( S )  cones raised the thresh- 
old o f  a vertical violet test grating but not 
a vertical red grating that was detected 
with the long-wavelength cones ( I ) .  The 
spatial adaptation was orientation selec- 
tive and confined to the S-cone path- 
ways. The gratings were 8 cycleideg and 
covered a 4" yellow adapting field, used 
to isolate the S-cone pathways. The ob- 
server slowly scanned the central region 
(approximately lo )  o f  the adapting grat- 
ing. The fine adapting grating "dis- 
solved" after several minutes' viewing, 
and the field appeared fairly uniform. 

Observers who are asked to uniformly 
scan a grating tend to fixate particular 
phases (2),  even at 8 cycleideg (3). Al- 
though our observer ( C . F . S . )  could bare- 
ly see the faded adapting grating, he may 
have fixated systematically so that the 
retina was not homogeneously adapted 
(4). In order to eliminate local retinal 
adaptation we have done an additional 
experiment. W e  controlled the move- 
ment o f  the stimulus on the retina by 
compensating for eye movements and 
drifting the grating at a constant retinal 
velocity (3). Under these conditions we 
still obtained orientation-selective adap- 
tation as strong as adaptation experi- 
enced during free viewing. 

Violet (- 450 nm) 4 cycleideg gratings 
o f  constant mean intensity (8.80 log 
quanta deg-' sec-', 23 trolands) covered 
a 4.3" diameter yellow (560 nm) field o f  
10.80 quanta deg-2 sec-' (50,000 tro- 
lands). All gratings were either vertical 
drifting leftward or horizontal drifting 
upward at 0.5 degisec (2 Hz).  Kelly and 
Burbeck (3) concluded that this rate o f  
movement o f  a "stabilized" image is 
sufficient to minimize the effect o f  local 
retinal adaptation on spatial pattern ad- 
aptation. The adapting grating was pre- 
sented for 5 seconds and alternated with 
the test grating, presented for 1.4 sec- 
onds. Each run consisted o f  3 minutes o f  
adaptation to this sequence followed by 

70 to 100 trials. The adapting contrast 
was either zero or 90 percent. Three test 
contrasts (including blanks) were ran- 
domly intermixed in each run. A single 
adapting and test orientation was used in 
each run. The visibility o f  the test grating 
was measured with a signal detection 
method (1). 

Eye position was monitored with a 
modified double-Purkinje-image eye 
tracker (5), and the grating was moved to 
cancel retinal image motion that would 
otherwise result from eye movements 
(6).  The observer's right pupil was dilat- 
ed, accommodation was paralyzed, and 
refraction was optimal for the violet pat- 
tern. An artificial pupil o f  3 mm was 
placed in an optical relay system (7) in a 

I 1 I  I I l l  
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Violet grating, contrast (%) 

Fig. 1. Detectability (d' + 1.0 standard error) 
of 4 cycleldeg violet vertical (A) and horizon- 
tal (B) test gratings as function of contrast. 
Adaptation: uniform violet field (0); high- 
contrast 4 cycleldeg violet grating, same ori- 
entation as test grating (0) or orthogonal 
orientation (a). Gratings moved with retinal 
velocity of 0.5 deglsec. Each curve is based 
on two or three runs in (A) and on one run in 
(B). Observer was C.F.S. 

1  I I I I I  

10 20 40 60 
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Fig. 2. Stimulus conditions as in Fig. IA, but 
gratings were stationary and unstabilized. 
Each curve is based on one run. 

plane conjugate to the natural pupil 
A vertical adapting grating strongly 

reduced the detectability o f  a vertical 
test grating, whereas a horizontal grating 
had little effect on the same test grating 
(Fig. 1A); this orientation selectivity was 
also obtained with a horizontal test grat- 
ing (Fig. 1B) (8). For comparison, Fig. 2 
shows the results when orientation-se- 
lective adaptation was measured with 
stationary unstabilized gratings. The lo- 
cal retinal adaptation that may occur in 
this case did not markedly increase the 
effect obtained with drifting gratings (9) .  
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