
in planktonic environments coupled with 
biological processes of selective feeding, 
digestion, and degradation during pellet 
formation and deposition, provide an ar- 
ray of organic compounds as diverse as 
the ecosystems that produced them. This 
chemical diversity of potential petroleum 
precursors can explain, in part, the vari- 
ety of hydrocarbon compounds found in 
crude oils. The pellets are also a major 
source of phosphate that later is avail- 
able to precipitate into nodules. The spe- 
cific environments in which pellet-rich 
banded sediments are being produced 
today may provide depositional strati- 
graphic models for future fossil fuel and 
mineral resource discovery and for the 
simulation of hydrocarbon-producing 
food chains. 
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Didemnins: Antiviral and Antitumor 
Depsipeptides from a Caribbean Tunicate 

Abstract. Extracts of samples of a Caribbean tunicate (ascidian, sea squirt) of the 
family Didemnidae inhibit in vitro at low concentrations the growth of DNA and 
RNA viruses as well as L1210 leukemic cells. The active compounds isolated from 
the tunicate, didemnins A,  B, and C, are depsipeptides, and didemnin B (a derivative 
of didemnin A)  is the component active at the lowest concentration in inhibiting viral 
replication in vitro and P388 leukemia in vivo. 

We have isolated from a Caribbean 
tunicate a new class of depsipeptides, 
including highly active antiviral and anti- 
tumor agents (I). Although these depsi- 
peptides-termed didemnins after the 
name of the tunicate family from which 
they are isolated-are closely related to 
one another, they vary in activity, sug- 
gesting the possibility of further chemical 
modification. This discovery confirms 
our earlier observations (2, 3) that the 
subphylum Tunicata or Urochordata 
(phylum Chordata) is of special interest 
both for the chemistry and for the bioac- 
tivity of the compounds tunicates con- 
tain (4, 5). 

The tunicate in our study was collect- 

ed at a number of sites (including Co- 
lombian, Honduran, Mexican, Belizean, 
and Panamanian waters) during the Al- 
pha Helix Caribbean Expedition 1978 
(AHCE 1978) (3). It has been assigned 
(6) to the family Didemnidae and is a 
member of the Trididemnum genus. Re- 
peated tests of methanol-toluene (3 : 1) 
extracts of the didemnid on shipboard 
against herpes simplex virus, type 1, 
grown in CV-1 cells (monkey kidney 
tissue) indicated that it inhibited the 
growth of the virus, over and above an 
underlying cytotoxicity to the CV-1 
cells. This result suggested that com- 
pounds in the tunicate extract offered 
promise both as antiviral agents and, 
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potentially, as antitumor agents as well. both RNA and DNA viruses (Table 1). 
Extracts of the tunicate collected at a At 1 mglml the extracts were also cyto- 

number of sites were subsequently test- toxic to the cells infected by the viruses, 
ed against other viruses. Essentially all but at 250 yglml the cytotoxicity general- 
of the extracts, regardless of the collect- ly disappeared. In addition, the sugges- 
ing site, showed activity in inhibiting tion that the extracts might also have 

Table 1 .  Bioactivities of didemnid tunicate (Trididemnum sp.) extracts and of didemnins. The 
activities are expressed as the relation of zones of cytotoxicity to zones of virus inhibition 
(zones of inhibition: 1 = 1 to 10 mm, 2 = 10 to 20 mm, 3 = 20 to 30 mm, and 4 = 30 to 40 mm) 
for 20 p1 of solutions containing 1 mg of sample per milliliter. 

Test AHCE sample* Didemnins 
-- -- 

material* C H M B P A B C 

HSV-1 
HSV-2 
Vaccinia virus 

PR8 
HA-I 
COE 
E R  

D N A  antiviral assays 
112 114 114 214 
113 114 114 214 213 313 213 
013 114 114 214 

R N A  antiviral assays 
213 214 010 414 
314 113 012 314 
314 210 012 410 
214 314 112 310 

Cytotoxicity IDs0 (pg1ml)i. 
0.16 0.20 0.26 N.T.§ 0.019 0.0011 N.T.$ 

*HSV-1, HSV-2 (herpes simplex virus, types 1 and 2), vaccinia virus, all grown in primary rabbit kidney cells; 
PR8 (influenza virus) was grown in embryonic chick kidney cells; HA-1 (parainfluenza-3 virus) was grown in 
Hep-2 (human epidermal carcinoma) cells; COE (Coxsackie A-21 virus) and ER (equine rhinovirus) were 
grown in ML (a variant of HeLa cervical carcinoma) cells. *C, Colombia; H,  Honduras; M, Mexico; B, 
Belize; and P, Panama. $IDJo, inhibitory dose. §N.T., not tested. 

Table 2. Virus titers in absence and presence of didemnins A and B. 

Concen- Virus titers, PFU10.2 ml* 
Drug tration -- 

(pdml) COE E R  HA-1 HSV-I HSV-2 

None? 0 1 . 9 x 1 0 4  1 . 2 x 1 0 3  6 . 1 x 1 0 2  3 . 1 x 1 0 3  9 . 0 ~ 1 0 '  
None 0 6.5 x lo7 2.5 x lo6 1.2 x lo6 2.0 x lo7 1.5 x lo6 
Didem- 50 2.9 x lo3 < 10' < 10' 2.2 x lo2 < 10' 

nin A $  5 1.8 x lo3 1.7 x lo2 4.0 x 10' 2.7 x lo5 2.4 x lo4 
0.5 1.6 x lo6 1.7 x lo4 9.9 x lo2 1.8 x lo7 9.3 x lo5 
0.05 5.7 x lo7 2.1 x lo6 2.3 x lo5 2.2 x lo7 1.5 x lo6 

Didem- 50 8.5 x 10' < 10' < lo1 < 10' < 10' 
nin B§ 5 1.6 x lo3 4.5 x 10' < 10' 2.0 x lo2 < 10' 

0.5 1.6 x lo3 2.5 x lo2 6.3 x 10' 2.1 x lo2 9.5 x lo2 
0.05 1.5 x lo7 3.6 x lo4 1.4 x lo3 2.5 x lo6 1.0 x lo5 

*Plaque-forming units 24 hours after inoculation of cells with virus and drug. Virus abbreviations are the same 
as in Table 1, :xcept that HSV-1 and HSV-2 were grown in Vero cells (a serially propagated monkey kidney 
cell line). tTime zero. $The inhibitory dose (IDSo) was 25 pglml (ML cells) and 50 & n l  (Vero 
cells), $The IDSo was < 1.5 pglml (ML cells) and 12 pglml (Vero cells). 

Table 3. In vivo activities of didemnins A and B against P388 leukemia in mice. 

Weight change Median survival TIC$ 
Dose (g) time (days)? 

-. 
(%I 

(mglkg)* 
A §  B§ A B A B 

*Per injection, on days 1, 5, and 9, intraperitoneally. Tumor cell inoculation on day zero. *The median 
survival time of control animals (without drug) was 10.2 days. fTestlcontro1. §A, didemnin A; B, 
didemnin B. 

antitumor properties received support 
from their high potency against L1210 
murine leukemic cells. 

Isolation and separation of the com- 
pounds responsible was effected by par- 
titioning the methanol-toluene extracts 
with aqueous sodium nitrate, extracting 
the aqueous layer with chloroform, con- 
centrating the chloroform layer, and 
chromatographing over silica gel with a 
step gradient of methanol in chloroform 
to give didemnins C, B, and A (in order 
of elution), which could be further puri- 
fied by preparative thin-layer chroma- 
tography with the same system. Didem- 
nins A, B, and C contain both the antivi- 
ral activity and the cytotoxicity of the 
crude extracts (Table 1). 

More detailed studies of didemnins A 
and B are provided in Tables 2 and 3. 
Didemnins A and B are both potent 
antiviral agents. Less than about 1 yM 
didemnin A and about 0.05 yM didemnin 
B effected a I-log reduction in titers of 
herpes simplex virus, types 1 and 2, 
whereas adenosine arabinoside, a clini- 
cal antiviral agent, was reported earlier 
to effect 1-log reductions in titers of the 
same viruses at levels above 10 yM (7). 
Didemnin B inhibits the five viruses at 
concentrations 10- to 100-fold lower than 
does didemnin A. However, it is also 
more cytotoxic toward the mammalian 
cells tested and the relative efficacy (if 
any) of the two didemnins as antiviral 
agents must await results of in vivo stud- 
ies. Initial results indicate protection of 
mice from vaginal herpes simplex, type 
2, infections by both didemnins A and B 
(8). 

With respect to antitumor activity, the 
concentration of didemnin B required for 
50 percent inhibition of L1210 cell 
growth is only 0.001 pglml, while that of 
didemnin A is more than ten times higher 
(Table 1). The higher potency of didem- 
nin B is also reflected in its in vivo 
antitumor activity. As shown in Table 3, 
the dosage level of didemnin B required 
to increase the life-span of P388 leuke- 
mia-bearing mice by 40 percent is only 
about 1 percent of that required for di- 
demnin A (0.46 mglkg compared to 8 mgl 
kg). More importantly, didemnin B ex- 
tends the survival time of tumor-bearing 
mice by about twofold (testlcontrol 
= 199) when the animals are given in- 
traperitoneal injections of the drug (1 
mglkg) on days 1, 5, and 0 after tumor 
inoculation. Thus, didemnin B is a prom- 
ising antitumor drug candidate and war- 
rants further development. Although the 
dose of didemnin A required for achiev- 
ing a comparable therapeutic effect is 
higher than that for didemnin B, the 
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former is still a very potent drug; howev- 
er,  because of a scarcity of sample, di- 

Gated Sodium-23 Nuclear Magnetic Resonance Images of an 
Isolated Perfused Working Rat Heart demnin A has not yet been evaluated at  

optimum dosage levels for its antitumor 
effect in vivo. Didemnin C, the trace 
component, has not been available in 
quantities adequate for extensive testing. 

Interest in the chemotherapeutic po- 
tential of the didemnins is heightened by 
recent investigations (9) resulting in the 
structure elucidation of didemnins A, B,  
and C (Fig. 1). Novel aspects are a new 
structural unit for depsipeptides, hy- 
droxyisovalerylpropionate, and a new 
stereoisomer of the highly unusual amino 
acid statine. It is particularly noteworthy 
that didemnins B and C are simple deriv- 
atives of didemnin A. That the biological 
activities of the didemnins can be dra- 
matically altered by slight chemical 
changes bodes well for the development 
of a useful therapeutic agent. 
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Abstract. Sodium-23 nuclear magnetic resonance images of phantoms and gated 
images of isolated perfused working rat hearts were obtained. By synchronizing the 
nuclear magnetic resonance process to the heartbeat, images were obtained at 
systole and at diastole. 

Since its inception (I),  nuclear mag- 
netic resonance (NMR) imaging has pro- 
gressed from a curiosity to the point 

tube with a thin layer (1 mm) of 100 mM 
NaCl on the bottom. By moving this 
phantom in the probe with the oscillating 

where it promises to become one of the z gradient on, the thickness of the im- 
aged slice was found to be about 1.5 mm. 
The acquisition of each free-induction 

more important diagnostic tools in medi- 
cine. Several examples of high-resolu- 
tion (millimeter) NMR images of pro- decay was triggered from the aortic pres- 
truding appendages of the human body, 
notably limbs and heads, have been pub- 
lished (2-4). Technological progress is 
being made, and NMR images of cross 
sections of the human torso may soon 
have a resolution comparable to that 

sure wave. A delay between the trigger 
from the pressure wave and acquisition 
is programmed in order to choose the 
instant within the cardiac cycle at which 
the acquisition is triggered. 

As has traditionally been the case, the 
now obtained for heads and limbs. It  is 
important that methods for using NMR 
imaging as a noninvasive diagnostic mo- 
dality in cardiovascular research be de- 

image-producing system was validated 
by making 23Na images of phantoms. 
Figure l a  shows a diagram of the cross 
section of a phantom that consisted of a 
20-mm outer diameter NMR tube filled 
with distilled water, into which were 
placed 5- and 2-mm outer diameter tubes 
containing 145 mM NaCl. Figure Ib  is 
the 2 3 ~ a  NMR image of this phantom 
(obtained at  95.25 MHz) resulting from 

veloped. 
Gating the acquisition of NMR signals 

to the heartbeat (5) was essential in our 
experiment in order to overcome the 
problems posed by heart motion. In ad- 
dition to  developing NMR technology 
suitable for imaging a beating heart, the 
physiological basis for providing con- 
trast between the heart and the blood 
must be identified. Proton NMR images 

12 projections in the x-y plane and recon- 
structed by the standard back-projection 
method. Each projection required aver- 
aging of 320 free-induction decays. The 

based on proton density alone may pro- 
vide little contrast between blood and 
surrounding tissues. However, there is a 

images shown in this report are defined 
by a matrix of 64 by 64 pixels and were 
photographed from the screen of a Hew- 
lett-Packard 1304A, producing (unfortu- significant difference between the con- 

centration of sodium in blood and that in 
healthy tissue. We sought, therefore, to 
produce 23Na NMR images of the heart. 
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