
content of surface sediments is fairly 
uniform between 1750 and 2750 m, with 
accelerated dissolution beginning below 
that depth. For the mooring experiment, 
there was a slight increase in dissolution 
between 2256 and 2869 m, with the level 
of rapid increase in dissolution in the 
water column occurring below that 
depth. These results indicate that within 
the Panama Basin neither the sedimenta- 
ry lysocline nor the hydrographic lyso- 
cline can be directlv related to a transi- 
tion from saturation to undersaturation. 
Earlier mooring studies in both the At- 
lantic (4, 5) and the Pacific (6-8) also 
demonstrated a lack of correlation be- 
tween the hydrographic lysocline and 
this critical level of carbonate saturation. 
If the pressure coefficient of - 42.5 cm3i 
mole is correct, the results of this study 
indicate that the dissolution kinetics of 
biogenic calcite in the laboratory and the 
deep sea may be similar. 
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Method for Estimation of Ocean Current Velocity from 
Satellite Images 

Abstract. Barotropic instability waves on a shear interface propagate at the 
average speed of the water on the two sides. Assuming the instability to be excited by 
tidal oscillations, the phase speed is the wavelength divided by the tidal period. If the 
water is at rest on one side of the shear layer the current speed on the other side can 
be calculated. This method, applied to the Gulf Stream beyond Cape Hatteras as 
seen in satellite images, gives estimates of current speed in general agreement with 
in situ observations. 

Infrared satellite images show the 
sharp thermal boundaries formed where 
ocean currents separate from topograph- 
ic boundaries. These thermal interfaces 
are also velocity interfaces (free shear 
layers), which in turn are unstable to 
perturbations caused by disturbances 
originating elsewhere in the ocean. A 
clear example of such a free shear layer 
is that formed by the inshore edge of the 
Gulf Stream as it passes Cape Hatteras, 
North Carolina, as shown in Fig. 1 .  The 
image is a Tiros-N infrared image with 
resolution - 1 km, obtained on digital 
tape from the Environmental Data and 
Information Service of the National Oce- 
anic and Atmospheric Administration 
and processed further in our facilities at 
Massachusetts Institute of Technology 
for navigational reference and contrast 
enhancement. 

The undulations in the free shear layer 
beyond Cape Hatteras contain a strongly 
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periodic component. The apparently pe- 
riodic waves upstream of Cape Hatteras 
we attribute to a local topographic dis- 
turbance. Figure 1 shows the inshore and 
offshore maxima in shear layer excursion 
marked with short line segments. The 
nearly periodic structure of the shear 
instability suggests that its excitation is 
periodic. Laboratory experiments by 
Browand (I) and Miksad (2) showed that 
periodic excitation of a free shear layer 
organized the instability fluctuations in a 
nearly periodic structure, while random 
excitation gave a random structure. Fig- 
ure 2 shows the power spectral densities 
of velocity fluctuations near a free shear 
layer that is unstable; the spectra are 
shown for a series of distances from the 
origin of the shear layer (2). The upper 
part of Fig. 2 shows spectra with ran- 
dom, nearly white-noise excitation, 
while the lower part shows the result for 
periodic excitation. 
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One is led to conclude that periodic 
fluctuations in a free shear layer are most 
likely caused by periodic excitation. We 
suggest that the periodic shear instability 
structure in the edge of the Gulf Stream, 
shown in Fig. 1, is due to periodic excita- 
tion, and that the excitation is the fluctu- 
ations associated with the semidiurnal 
lunar (M2) tide, which has a period of 
approximately 12.4 hours. 

When one knows both the wavelength 
and the period of a propagating distur- 
bance, one finds the propagation speed 
as the ratio, and we find the average 

speed of the first few shear waves to be 
1.2 mlsec (2.4 knots). 

A further assumption is that the insta- 
bility is barotropic, so that for a layer 
that is thin compared to the instability 
wavelength, the propagation speed of the 
instability is the average of the speed of 
the water on the two sides. By the speed 
of the water we mean the average speed 
over many fluctuations. Stommel (3) 
showed that the Gulf Stream shear layer 
is thin beyond Cape Hatteras. If we now 
take the average speed of the water 
inshore of the shear layer to be negligi- 

Fig. I. Enhanced infrared image of the sea surface near Cape Hatteras, North Carolina, 
showing shear instability waves, with wavelengths indicated, in the Gulf Stream edge. The 
image was constructed from Tiros-N data taken on 23 March 1979. The dotted, nearly vertical 
line is the satellite nadir track; the coast and the state boundary are also superimposed on the 
image. 

Fig. 2. Velocity fluctuations measured in a free shear layer in the laboratory, at a series of 
positions downstream from the origin. The upper half represents random excitation, the lower 
half periodic excitation. Note the line spectrum that indicates a periodic response. 
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ble, we can calculate the average speed 
of the water on the offshore side of the 
shear layer, and we find that the average 
current there is 2.4 mlsec (4.8 knots). 

Boisvert (4) found a current beyond 
the offshore edge of the shear layer to be 
close to 4 knots, as a maximum value, 
while the minimum observed current 
was much less [see also Richardson et al. 
( 3 3 .  Most current observations are from 
fixed current meters. A current meter at 
the mean position of the Gulf Stream 
edge would be inside the current part of 
the time and outside part of the time. The 
observed average current would then be 
less than the actual current. 

Our test of the method of estimating 
current from a satellite image, by assum- 
ing tidal excitation and barotropic insta- 
bility, thus yields results in general 
agreement with observations. The meth- 
od can, of course, be refined by use of in 
situ observations and of observational 
results for other shear layers farther in- 
shore, if they can be found. Preliminary 
investigation indicates that the method 
gives good results when used to estimate 
the flow south of Georges Bank, in the 
Florida Current at Grand Bahama Is- 
land, as well as in other places. Although 
the method requires further verification 
and refinement, we feel that it may be- 
come a useful tool for current speed 
estimates in places that are inaccessible 
or inconvenient for ships and buoys, and 
that it may be able to provide long-term 
time series of a crude kind when in situ 
observations contain gaps in location 
and time. 
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