
exposed to situations of danger and is the 
individual least likely to be killed by 
predators or accident; this is typical also 
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sembles the termites more closely than it 
resembles the Hymenoptera in that the 
mole rats are diploid ( l l ) ,  have male and 
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female members of the working castes, 
the young contribute to colony labor, 
some working individuals are able to 
become fully reproductive when the 
breeding female is removed, phero- 
mones may be involved in caste determi- 

Male Vole Urine Changes Luteinizing Hormone-Releasing 

Hormone and Norepinephrine in Female Olfactory Bulb 
nation, and the young obtain food from 
the adults by coprophagy. These fea- 
tures, together with the overlap of gener- 

Abstract. Female prairie voles (Microtus ochrogasterj exposed to a single drop of 
male urine on the upper lip showed changes in concentrations of luteinizing 
hormone-releasing hormone ( L H R H )  and norepinephrine in olfactory bulb tissue; 
no such changes occurred in dopamine concentration. The changes were measured 
in the posterior but not the anterior olfactory bulb tissue of females within 1 hour 
after they were exposed to  urine. These female5 also showed rapid increases in 
serum concentrations of luteinizing hormone. Females exposed to  water on the 
upper lip showed none of these changes. These results suggest that in this species 
LHRH and norepinephrine in the olfactory bulb may mediate luteinizing hormone 
release in response to external (pheromonalj chemical cues. 

ations that allows several generations of 
offspring to assist the parent in the care 
of the young and the finding of food, 
parallel the eusociality of insects and 
seem to qualify Heterocephalus as a 
eusocial animal-the only vertebrate for 
which this can be suggested at present. 
Furthermore, as  with the termites, these 
findings demonstrate that, despite its im- 
portance in the Hymenoptera (12) haplo- In many mammalian species estrous 

cycles and ovulation are viewed as  
"spontaneous"; that is, females of re- 

(NE) and dopamine provide an addition- 
al level of regulation over female repro- 
duction (8). These neurotransmitters 
have been found in the olfactory bulb (9) 
and studies have related N E  to stimula- 
tion and dopamine to inhibition of repro- 

diploidy is not a necessary prerequisite 
for the evolution of eusociality. 

J .  U. M. JARVIS 
Zoology Department, 
University of Cape Town, 
Rondebosch, 7700, South Africa 

productive age continuously exhibit re- 
productive cycles (I).  In some species, 
however, external stimuli play a prdmi- 
nent role in the control of reproduction. 
For example, in the prairie vole Microtus 
ochrogaster, both estrus and ovulation 
depend on stimuli provided by the male. 

ductive processes under olfactory con- 
trol (10). In the experiments described 
here we examined the relationships 
among locallzed (anterior or posterior) 
olfactory bulb L H R H  and catecholamine 
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Table I .  Concentratlons of LH In the serum of female pralrle voles exposed to male vole urine 
or to water. The results are expressed as means * standard error. When the mean LH 
concentrations were calculated, samples wlth nondetectable amounts were ass~gned a value of 
50 ngiml. which 1s the sensltlvlty of the assay. 

Urine Water 
Time after 
treatment LH 

Percentage of LH Percentage of 
(mmutes) samples with samples wlth 

(ndml) detectable LH (nglml) detectable LH 

(17) than concentrations measured 1 
minute after urine application ( U  = 10, 
P < .05) (Fig. 1A) and were higher than 
concentrations in water-treated females 
at  60 minutes after treatment ( U  = 8, 
P < .02) (Fig. 1A) (18). Concentrations 
of N E  were also significantly greater [F  
(1,43) = 10.0, P < .01] in posterior 
compared to anterior olfactory bulb ex- 
tracts from water-treated females (com- 
pare Fig. 1, C and D) (19). A significant 
time-dependent decrease in the concen- 
tration of N E  at 1 minute compared to 60 
minutes ( U  = 3, P < .01), reaching 54 
percent depletion, was observed in the 
posterior olfactory bulb of urine-treated 
females (Fig. IC). Concentrations of do- 
pamine in females exposed to urine did 
not differ significantly between anterior 

(117 F 11.8 pgimg, mean I: standard 
error) and posterior (1 19 i 11.0 pgimg) 
olfactory bulb sections or as a function 
of time after exposure to  urine (for each 
of the four intervals, 129 i 18.7, 
123 i 14.9. 115 2 14.8. and 106 -t 15.7 
pglmg, respectively). Control females re- 
ceiving water did not show significant 
time-dependent changes in LHRH, NE, 
or dopamine. 

Serum L H  concentrations (Table 1) 
for urine-stimulated female voles were 
elevated in comparison to water-exposed 
controls at 1 minute ( U  = 8 ,  P < .02) 
and 30 minutes ( U  = 12, P < .06) after 
stimulation and returned to nondetecta- 
ble levels at 60 minutes. In general, 
serum L H  concentrations for water-ex- 
posed females were low except for an 

Posterior olfactory bulb Anterior olfactory bulb 

r r 

I I I 0 ,  1 i I 

1 15 30 60 1 16 30 60 

Minutes after stirnuiatlon 

Fig. 1. Mean (i 
standard error) con- 
centrations (pico- 
grams per milligram) 
of LHRH and NE in 
posterior and anterior 
olfactory bulb ex- 
tracts. Female prairie 
voles were exposed to 
either male urine or to 
water and killed at I ,  
15, 30, or 60 minutes 
later ( N  = 7 per 
group). 

apparent surge at 15 minutes after expo- 
sure when L H  concentrations in water- 
and urine-stimulated females were 
equivalent. 

As in the rat (T ) ,  L H R H  was preferen- 
tially localized in the posterior half of the 
olfactory bulb. An area within the poste- 
rior half of the olfactory bulb that has 
been implicated in L H  release (20) and is 
believed to influence reproduction in 
general, is the accessory olfactory bulb 
(4). Although we cannot document a 
causal relationship between the ob- 
served changes in olfactory bulb LHRH 
and L H  in the vole, the localization and 
changes of LHRH concentration within 
the posterior olfactory bulb indicate that 
a specific neuroendocrine pathway may 
link the external chemical environment 
to L H  release and reproductive activa- 
tion. We suggest that olfactory and gus- 
tatory information contained in male 
urine [which is known to stimulate vo- 
meronasal organ receptors (21)], is trans- 
mitted to the accessory olfactory bulb 
(22) where LHRH neurons may then 
participate in the release of L H  from the 
pituitary by a yet unidentified neural 
pathway (23). 

Since serum L H  concentrations were 
increased in urine-exposed females at  1 
minute after treatment, a rapid activation 
of posterior olfactory bulb neurons may 
have preceded this interval. The LHRH 
concentrations measured after this peri- 
od were presumably the net result of 
changes in LHRH synthesis and release. 
The time-dependent decrease in N E  con- 
centration, also localized to the posterior 
olfactory bulb, may implicate N E  in the 
synthesis o r  release of LHRH. The high- 
est concentration of posterior olfactory 
bulb LHRH in urine-stimulated females 
appeared at a time when serum L H  was 
lowest (60 minutes). This high concen- 
tration of L H R H  may represent a rela- 
tively greater increase in synthesis than 
release. It is possible that high concen- 
trations of serum L H  specifically pro- 
duced by olfactory and gustatory stimuli 
contained in male urine feed back to the 
posterior olfactory bulb and inhibit the 
release process. 

It is also possible that a stress factor 
(handling of the animals) contributed, in 
part, to the activation of the hypothalam- 
ic-pituitary axis causing the release of 
LH.  A moderate increase in serum L H  in 
water-stimulated females 15 minutes af- 
ter the application of the s t imulh  might 
reflect general handling stress. Some 
changes, albeit not significant, were ob- 
served in LHRH (Fig. 1B) and &E (Fig. 
ID) concentrations within thk anterior 
olfactory bulb of both urine- and water- 



treated females 15 minutes after applica- 
tion. 

Our results indicate that exposure to 
male urine may produce measurable en- 
docrine and neurohormonal changes in 
LHRH and NE and that these changes 
are measurable in posterior, but not an- 
terior, olfactory bulb tissue. These 
changes implicate olfactory bulb LHRH 
and NE as possible mediators for LH 
secretion and may offer support for a 
possible role of the vomeronasal system 
in the activation of female reproduction 
in this species. 
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Age Determination for the Shanidar 3 Neanderthal 

Abstract. Close agreement between the age at death estimated by macroscopic 
and microscopic methods was obtained for the Shanidar 3 NeanderthaE. This 
suggests the possibility of obtaining age at death estimates by microscopic methods 
in other fossil hominids where the skeletal remains are highly fragmentary and 
macroscopic methods are not applicable. 

Age assessment for fossil hominids 
has relied primarily on macroscopic indi- 
cators. These include morphological 
changes of the pubic symphysis and sa- 
croiliac joints, cranial suture closure, the 
degree of dental occlusal attrition, proxi- 
mal femoral trabecular bone loss, and a 
variety of osteoarthritic changes (1). 
These indicators have been shown to 
provide ages of death from recent skele- 
tal samples that are reliable primarily for 
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individuals under 40 years of age. The 
age at death determinations for the fos- 
sils are based on the assumption that the 
rates of skeletal growth and degeneration 
among Pleistocene human populations 
were similar to those of preindustrial 
modern populations, although some pro- 
cesses, such as dental attrition, may 
have occurred at a faster rate. 

Analysis of the degree of remodeling 
of cortical bone and the development of 
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