
Energetics of Honeybee Swarm Thermoregulation 

Abstract. Honeybee swarms regulate their core temperature at a high set point 
(near 36°C) and the mantle at a low set point (near 15°C). The temperature gradient 
from core to mantle permits considerable energy economy, and it is abolished only 
-shortly before swarm takeoff. 

Thermoregulation in the honeybee 
Apis mellifeera mellifera has been studied 
in relation to  individual bees (I) and to 
hive responses at both high (2) and low 
ambient temperatures (3, 4). In contrast, 
except for two isolated reports (5, 6), 
each restricted to  a few hours of obser- 
vations on a single swarm, almost noth- 
ing is known about possible swarm ther- 
moregulation and swarm energetics. 

A swarm, the primary reproductive 
unit of a colony, usually consists of the 
old queen and approximately half of the 
parent colony's workers (I).  The swarm- 
ing workers engorge themselves from the 
hive's communal honey stores before 
departing from the hive (7). 

A crucial step in the success of this 
swarm in founding a new colony is the 
ability to  find (a), correctly evaluate (9), 
and occupy a potential nest site such as a 
hollow tree within which the bees can 
exert sufficient control of temperature to 
survive the winter. In this nest-finding 
process, the bees are constrained by 
limited amounts of food energy and time. 
I now report on the thermoregulation of 
swarms and the mechanisms of manage- 
ment of the swarm's energy resources. 

Measurements of swarm temperature 
(10) over a range of air temperature (%,) 2 
to 3 cm adjacent to  the swarms, indicat- 
ed steep gradients from the inside to  the 
outside (Fig. I), but the temperature of 
both the swarm core (T,) and swarm 
mantle (T,) were regulated. Both small 
(< 2000) and large (> 30,000 bees) 
swarms maintained T, near 35" to 36°C 
regardless of air temperature (T,) (Fig. 
2 ) ,  the same temperature as  that found in 
the brood nest of a hive (11). However, 
unlike brood-nest temperatures that are 
maintained within i 0.5"C (1-4), Tc fluc- 
tuated widely. 

Mantle temperatures were maintained 
at 15" to 21°C regardless of T, when T, 
was between 1" and 16°C. When T, was 
greater than 16"C, Tm was unregulated, 
averaging 2" to  3°C above T,. In three 
free swarms in which T, and Tm were 
continuously monitored (I]), there were 
also steep temperature gradients from 
core to mantle; but several hours before 
swarm takeoff, Tm increased and all tem- 
perature gradients through the swarm 
were abolished so that at takeoff Tm was 
identical with T,. 

At air temperatures less than 16°C the 
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mantle bees were unable to  take off in 
flight but were ready to raise their abdo- 
mens and expose their stingers to  intrud- 
ers. Their thoracic temperatures (Tth) 
(12) were regulated, being maintained 
near 15"C, independent of Ta (Fig. 2). 
Disturbances of the swarm mantle 
caused alert, flight-ready bees to  emerge 
from the swarm core and sometimes to  
attack. Bees forcibly separated from the 
swarm at  T, < 5°C became immobile and 
incapable of stinging and arousal within 
minutes. Although bees on the swarm 
mantle could crawl into the swarm core 
and warm up to above 30°C in several 
minutes (13), they usually remained in 
place without crawling into the swarm 
interior. Thus, even though the bees on 
the swarm mantle are temporarily inca- 
pable of flight a t  low Ta, they have the 
option to rapidly warm up by taking 
advantage of the cluster. 

In direct contrast to  the one previous 
observation of one swarm (6), I found 
increases in volume in 14 swarms a s  T, 
increased (Fig. 1). As seen through the 
transparent plexiglass (lo), a t  high T, 
swarms consisted of curtains of station- 
ary bees with large open passageways 
between these curtains. The p-assage- 
ways were used by many bees traveling 

between the core and the mantle (13). At 
low T,, these passageways were filled 
with immobile bees, and the bees on  the 
swarm mantle pointed their heads in- 
ward and crowded closely side by side. 
The density of swarms at  l o  to  5°C was 
0.13 cm3 per bee (as in clusters of dead 
bees), decreasing almost fourfold to  0.50 
cm3 per bee at  30°C (14). These measure- 
ments indicate that the bees occupy all 
available space inside the swarm at  low 
T,. By keeping themselves individually 
warm by crowding close together and 
moving into the available space, the 
mantle bees reduce both the channels for 
active convective heat loss from the 
swarm interior, as  well as  the porosity 
and swarm surface area for passive con- 
vective heat loss from the exterior (13). 
The crowding could account for in- 
creased retention of C 0 2  in the core 
observed at  low T, (6). 

Energy expenditure was determined 
by measuring the rate of oxygen con- 
sumption of whole swarms over a wide 
range of T, (15). The swarm metabolism 
mimicked the thermoregulatory re- 
sponse found in vertebrate homeotherms 
(16), being elevated to  1.6 to  3.2 ml of O2 
per gram per hour at  0" to 5"C, reduced 
to 0.2 to  1.0 ml of 0 2  per gram per hour 
at 12" to 18°C and again increasing to 
approximately 1.5 ml of 0 2  per gram per 
hour at 28°C. Unlike in vertebrate ho- 
meotherms, however, swarms ranging in 
size at least ninefold had similar weight- 
specific metabolic rates. Thus, the small 
swarms were apparently not thermoreg- 

Fig. 1. Temperature profiles and swarm shape and dimensions a t t h ree  different ambient 
temperatures. This swarm consisted of 16,600 bees. The 46°C recorded in the swarm core at l°C 
was unusual (see Fig. 2). 
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ulating at low Ta simply by increasing in swarm metabolism since the metabolic economy by conserving the food re- 
their rates of heat production, as was contribution of the mantle bees was de- sources carried by the bees and needed 
predicted by surface-volume consider- creased. When T, is dropped still lower, by them in finding and building a new 
ations. the bees on the mantle cluster tightly and nest. 
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