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Particle aggregates were surrounded by a 
partial halo of nonparticulate membrane. 
We conclude that gap junctions provide 
the channels by which MNC's are dye- 
coupled. 

Neuronal populations that fire action 
potentials synchronously (8, 9) and en- 
docrine populations stimulated to se- 
crete hormone in unison (22) are usually 
composed of electrotonically coupled 
cells (23). Our results show that some 
neuroendocrine cells in the rat hypothal- 
amo-neurohypophysial system are dye- 
coupled and possess gap junctions. Since 
ionic current can flow through gap junc- 
tions that mediate dye coupling (lo), 
some mammalian neuroendocrine cells 
should also be electrotonically coupled. 
Two hypotheses are suggested. First, the 
recruitment of vasopressinergic MNC's 
into a phasic firing pattern in the rat 
could be enhanced by electrotonic cou- 
pling. Second, the spike burst of oxytoci- 
nergic MNC's before the milk ejection 
reflex could be synchronized by elec- 
trotonic coupling. Studies with immuno- 
histochemical techniques (24) should re- 
veal the identity of coupled neuropepti- 
dergic cells. 
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Unique Eye of Probable Evolutionary Significance 

Abstract. The eyes in the brain of a larvalflatworm studied by electron microscopy 
are dissimilar. Light-sensitive structures in the right eye are microvilli; those in the 
left eye, the unique one, are both microvillar and ciliary. Perhaps this is evidence for 
the origin of a microvillar line of photoreceptoral evolution from a more primitive 
ciliary line. 

Larvae of certain marine flatworms eye (Fig. 1) is composed of one cup- 
have two symmetrically situated cere- shaped pigmented cell (eyecup), whose 
bra1 (that is, brain associated) eyes, cavity is directed laterally, and three 
called ocelli (1). In the larva of Pseudo- sensory cells. Each sensory cell extends 
ceros canadensis studied by us (2) the an array (rhabdomere) of straight, cylin- 
two eyes are unlike each other. The right drical, tightly packed microvilli into the 
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eyecup. One rhabdomere projects dor- 
sally, another ventrally, and the central 
one toward the base of the pigmented 
cup. The bodies of the sensory cells, 
containing the nuclei, lie outside the 
opening of the eyecup. 

The left eye (Fig. 2) is similarly orient- 
ed and constructed of one pigmented and 
fow sensory cells. Three of the sensory 
cells bear cylindrical microvilli (right in- 
set) like those in the right eye. The 
central sensory cell, however, sends un- 
usually large arching cilia into the eye- 
cup among the three rhabdomeres. Be- 

cause of the curvature of the cilia a given 
section will show them cut longitudinal- 
ly, obliquely, or transversely (left inset). 
In one ocellus we estimated about 50 
cilia and 480 microvilli. Incidental cilia 
occur in many rhabdomeric eyes (3), but 
we know of no other cerebral eye with 
prominent arrays of both microvilli and 
cilia. Moreover, we know of no animal 
exhibiting bilateral asymmetry in its pho- 
toreceptors. Because of the positions of 
the microvilli and cilia within the eyecup 
we infer that both are photosensitive. 

What is the possible evolutionary sig- 

Fig. 1 (top). Electron micrograph of right eye composed of a pigmented eyecup (P) containing 
three rhabdomeres of microvilli (I, 2, and 3). The scale bar is 0.5 pm. Fig. 2 (bottom). 
Electron micrograph (montage) of left eye composed of three rhabdomeres of microvilli (1 and 
2) and one central array of cilia (C) in a pigmented eyecup (P). The scale bar is 1.0 pm. (Right 
inset) Rhabdomeric microvilli in cross section; Oeft inset) a cilium in cross section. The scale 
bar is 0.1 Wm. 

nificance of the eyes, especially the left 
one, in this marine flatworm? The senior 
author theorized that there are two lines 
of photoreceptoral evolution: ciliary and 
rhabdomeric (4). The former is found in 
protists, coelenterates, bryozoans, ar- 
rowworms (chaetognaths), lower chor- 
dates, and vertebrates. The photorecep- 
tor in these groups is usually a modified 
cilium. In arthropods, annelids, mol- 
lusks, and flatworms, the predominant 
photoreceptoral type belongs to a rhab- 
domeric lineage in which the photo- 
receptor is formed of microvilli or mem- 
branous lamellae from the cell surface, 
not from cilia. In both of these phyletic 
assemblages, however, photoreceptors 
of the opposite type are occasionally 
found (3). 

There are other theories that attempt 
to describe the evolution of photorecep- 
tors (5), but according to our theory the 
flatworms (Platyhelminthes) are near the 
divergence between those invertebrate 
phyla in the rhabdomeric line and those 
in which ciliary photoreceptors predomi- 
nate. We suggest that the larva of Pseu- 
doceros canadensis retains a ciliary pho- 
toreceptor, inherited from more primi- 
tive ancestors, plus an innovation in light 
sensors inherited from ancestral 
flatworms, namely, an array of microvil- 
li. The rhabdomere then became the 
dominant photoreceptor in the evolu- 
tionary lineage that culminated in the 
eyes of cephalopods and arthropods. 
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