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Turbulent Vertical Transport due to Thin Intermittent Mixing 
Layers in the Stratosphere and Other Stable Fluids 

Abstract. Pollution effects in the stratosphere and the ocean are exacerbated by 
buoyant stability. Turbulence in such media is confined to thin layers. To estimate 
vertical transport by such turbulence, one can view the situation as nature's way of 
simulating the finite-difference dz$iusion equation. This analogy finally yields a dif- 
fusivity parameter which is valid for this extremely inhomogeneous case. 

The effects of pollution in the strato- 
sphere and the ocean are of increasing 
concern to society. Unfortunately, these 
environments have high static stability in 
the sense that a displaced fluid parcel 
tends to return to equilibrium height. 
This traps pollution so that it can, for ex- 
ample, catalytically destroy stratospher- 
ic ozone. I t  also severely restricts the 
vertical extent of turbulence so that the 
latter occurs in thin, horizontal, pan- 
cake-shaped layers which, in the strato- 
sphere, are of the order of 100 m thick 
and several kilometers wide. In the 
ocean a thickness of 10 cm is typical. 
Such layered turbulence is extremely in- 
homogeneous in the vertical direction, 
and for this and other reasons it appears 
that vertical transport cannot be validly 
described by the usual eddy diffusion pa- 
rameter of turbulence theory. 

The purpose of this report is to devel- 
op a self-consistent bulk diffusion param- 
eter, KB, which is valid for layered turbu- 
lence in a stratified fluid and which can 
be related to experimental observables. 
It will be assumed that the (horizontal) 
flow between the turbulent layers is lami- 
nar and that molecular diffusion is rela- 
tively insignificant. Total mixing is as- 
sumed to take place within the mixing 
layers. The latter assumption is consis- 
tent with the observation of steplike 
structures in vertical temperature pro- 
files in the upper ocean (I) and of similar 
structures in potential temperature pro- 
files (over regions around 100 m thick) in 
the stratosphere (2) and upper tropo- 
sphere. Another assumption is that the 
turbulent layers occur at random heights 
with random thicknesses (I). Finally, it 
is assumed that homogeneity in the hori- 
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zontal direction permits use of a one-di- 
mensional model. 

A series of computer experiments is 
used to demonstrate that (i) vertical 
transport by random mixing layers can 
be regarded as a form of "discontinuous 
diffusion" and (ii) KB is independent of 
initial and boundary conditions-that is, 
it is a valid diffusion parameter. In effect, 
the latter is the assertion that a series of 
random averages (over small regions) 
can serve as a Monte Car10 simulation of 
the diffusion equation. 

The mechanism for vertical transport 
by the action of mixing layers is shown in 
Fig. 1. Let $ be, for example, the pollu- 
tant concentration or mixing ratio. For 
simplicity, $ is assumed to vary linearly 
with altitude, z .  Let I denote a mixing 
layer. As a result of the mixing, $ will 
become constant within the layer, as 
shown by the dotted line. Material in re- 
gion A can thus be transported to B. 
Once total mixing has occurred, there 
will be no further net vertical transport. 
The turbulence in I will eventually 

decay. Subsequently, a second mixing 
layer, 11, could form which, by chance, 
overlaps the region originally occupied 
by I. It should be evident that this would 
cause further downward transport. The 
combined effect of I followed by I1 will 
thus cause some material to move from 
A to the bottom of 11. Clearly this trans- 
port process has two essential aspects, 
namely mixing and overlap. 

Digital computer simulations of the ef- 
fects of random mixing layers on various 
initial distributions of $ were performed 
in the following way. The values of z 
were represented by 400 points. Initial 
values of $ were designated at these 
points (different assignments for the vari- 
ous cases). Two random number gener- 
ators were used in order to (i) pick a ran- 
dom value of z on which to center the 
layer and (ii) pick a layer thickness, A, 
according to the following assignments 
of N, where N is a random number of 
uniform distribution from 0 to 99. When 
0 5 N 5 53, A was set equal to 3 points. 
Similarly, 53 < N 5 74 gave A = 5; 
74 < N 5 85, A = 7; 85 < N 5 92, 
A = 9; and 92 < N 5 99, A = 11. This 
choice of probabilities was based on a 
distribution reported in (2), but which for 
present purposes should be regarded as 
arbitrary but reasonable. Based on this 
assignment, the root-mean-square of A 
was about 5.5 points. The effect of mix- 
ing was simulated by averaging. For ex- 
ample, the mixing of a 3-point layer cov- 
ering points z = 251, 252, and 253 would 
be simulated by replacing the original 
values of $ at these 3 points by the aver- 
age of $ over these points. 

Figure 2 shows the time development 
of +(z) for the first case. Its initial distri- 
bution was + = 0 for all 400 values of z 
except for the point z = 200. At that 
single point $ = 100 initially. The curves 
started when 250 mixing events had been 
simulated and were drawn at intervals of 
500 events, concluding when 26,256 
events had been simulated. There is a 
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Fig. 2. Development of 4 as a 
function of time as a result of 
random mixing layers simu- 
lated on a computer. The ini- 
tial 4 is a delta function. 

striking similarity between this spreading 
behavior and the behavior seen in ordi- 
nary diffusion. 

To calculate Kg for the process shown 
in Fig. 2 we consider the solution of the 
diffusion equation for the case where 4 is 
initially a delta function centered at zo. 
The well-known solution (one-dimen- 
sional, - cc < z < 30) is 

where K is a constant and t is time. 
To determine K, one can measure 

z - zo such that 4 has fallen by the 
amount lie from its peak value at zo. 
Designating this value of z - z, by re, the 
bulk diffusion Kg = re2/4t, as can be 
seen by setting the exponent of Eq. 1 
equal to unity. This was done for the 
case where 30,400 mixing events had oc- 
curred and the result, in nondimensional 
form [in units of (h2)1/2 and At], was 
KB-del,a = 1.45 x p / A t .  Here, 
refers to mean square layer thickness 
and At stands for the average time inter- 
val between mixing events. The sub- 
script B-delta indicates "bulk" dif- 
fusivity based on an initial delta-function 
distribution. Other subindices will be 
used for the alternative simulations be- 
low. 

Since we are examining an unusual 
type of diffusion process, it is necessary 
to prove that it is a consistent one in the 
sense that the "constant" KB is truly in- 
dependent of the initial and boundary 
conditions on 4. We thus consider three 
more computer experiments which differ 
from the one above only in initial and 
boundary conditions. Case 2 was chosen 
to be the classic case of a semi-infinite 
slab with 4 = 0 inside and 4 = 1 outside 
initially. The computer mpdel consisted 
of holding the value of paints outside 
the slab fixed and letting the random 
mixing layers occur outside and inside 
the (finite) slab until the other end of 
the slab became involved. At the end 
of the 14,000 events, Kg was calcu- 
lated by using the continuous solution 

4 = 1 - efly) where y = z/2.\/K? and 
erf(y) is the error function, which is tabu- 
lated in various places. The result was 
KB-lnt = 1.59 x F / A t ,  where int is 
used for "intrusion." Case 3 was the 
"insulated slab" with 4 = z/R 
(0 < z < R) initially, where R is the slab 
thickness. The continuous solution (from 
Fourier-series expansion) shows that the 
first spatial harmonic, A,([), decays as 
(-41~) exp -K(riR)'t. By performing a 
fast Fourier transform on the computer 
solution to determine A, after 40,000 
mixing events, it was determined that 
KB-,,,,, = 1.50 x p / A t .  Finally, 
for case 4, a steady-state situation was 
simulated which consisted of calculating 
the flux of 4 through a slab (region of z) 
400 points thick in an "environment" 
3000 points thick. The initial 4 was set to 
the steady linear profile which resulted 
from the values of +,,, and $,,, at the 
minimum and maximum points of the 
environment. The program was devised 
by N. Grossbard in a manner which 
imposed no boundary conditions on 
the slab. The calculation of KB-,,, in- 
volved Fourier's relation KB-,", = 

(flux)/(d$/dz), where the gradient was 
taken at the steady-state (calculated) val- 
ue, and this gave the result 1.45 x - 
A2/At. A comparison of the various val- 
ues of KB above shows that, to an ap- 
proximation, the "random layer" KB is 
self-consistent and truly "diffusive" in 
nature. The presence of S / A t  for KB 
could be immediately inferred from Fig. 
1 by a dimensional argument. 

Richardson number, Ri, profiles can 
be used to estimate both and F ,  the 
fraction of the vertical dimension that is 
turbulent. By definition, Ri = N2iS 2 ,  
where N and S are, respectively, the 
buoyancy (Brunt-Vaisala) frequency and 
the vertical shear of the horizontal fluid 
velocity. The usual criterion for dynamic 
(shear) instability is Ri < 114. It can be 
shown analytically (3) that KB-flux can be 
estimated from (4) 

The quantity At, is the average time 
between an observation of the Ri profile 
and turbulent onset and may be mea- 
sured by a combination of observations 
(I, 5) and theory (3). Richardson number 
profiles can be measured by in situ 
soundings [for example, from balloon (I, 
3, 611 and remote observations [for ex- 
ample, by radar (5, 7-9)] as well as with 
the help of smoke trail-derived velocity 
profiles (3). Allowance must be made for 
layer spreading effects (1, 3) in the esti- 
mates of A and F.  To compare the results 
of Eq. 2 with the nondimensional esti- 
mates, one must use 

At, - At 
F X/R 

where R is the thickness of the fluid slab 
used in simulation. Equation 2 agrees ex- 
actly with the simulations, as can be 
shown with the help of Eq. 3. 

In conclusion, a simple model of ran- 
dom mixing-layer transport in con- 
junction with computer experiments has 
led the way to a new bulk diffusivity pa- 
rameter, Kg, which is valid for the type 
of stratified turbulence found in such 
fluids as the stratosphere and parts of the 
troposphere and ocean. This parameter 
can be estimated through Eq. 2 by means 
of measurements of Ri profiles and At, in 
the environment. It is based on the idea 
that layered turbulence can be regarded 
as a sort of stochastic (Monte Carlo) sim- 
ulation of the diffusion equation. The dif- 
ficulties presented by the extremely in- 
homogeneous nature of stratified turbu- 
lence can thus be overcome. 
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