
identical in sign. (ii) The behavior of the 
type I11 cells could also be attributed to a 
more generalized lateral inhibitory net- 
work consisting of an array of type I 
cells, all of which have neighboring re- 
ceptive fields. In this case, the synaptic 
connections of neighboring type I cells 
onto type I11 cells should be opposite in 
sign. 

From this preliminary study, as well as 
from detailed anatomical studies (18), 
many analogies can be drawn between 
the retina of the visual system and the 
PLLL of the electrosensory system. 
Functionally, both the ganglion cells of 
the retina and the type I11 cells of the 
PLLL are designed to respond maxi- 
mally to local changes in the stimulus. 
Local contrast is accentuated, whereas 
uniform illumination or large-field ampli- 
tude modulations have little effect on the 
discharges of a ganglion cell or a type I11 
cell, respectively. 
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Interaction Between Purine and Benzodiazepine: Inosine Reverses 
Diazepam-Induced Stimulation of Mouse Exploratory Behavior 

Abstract. Inosine, 2-deoxyinosine, and 2-deoxyguanosine completely reversed the 
increase in exploratory activity ellcited in mice by diazepam. The inhibition of explor- 
atory behavior by purines occurred at doses that when given alone have no effect on 
exploratory behavior. 7-Methylinosine, which does not bind to the brain ben- 
zodlazep~ne binding site in vitro, had no effect on the diazepam-induced increase in 
exploratory behavior. Behavioral effects produced by various combinations of ino- 
slne and diazepam indlcate that the interaction between purine and benzodiazepine 
is antagonistic and support the hypothesis that the naturally occurring purines func- 
tion in anxiety-related behaviors that respond to benzodiazepine treatment. 

The recent discovery of pharmacolog- 
ically relevant, high-affinity, stereospe- 
cific binding sites for the benzodiaze- 
pines in the central nervous system (I)  
has prompted studies on the possible 
physiological significance of these sites 
and attempts at isolating endogenous lig- 
ands (2). Several naturally occurring in- 
hibitors of the binding of 3H-labeled 
diazepam have been isolated from mam- 
malian brain and proposed as endoge- 
nous ligands (3). Our studies have fo- 
cused on the purines inosine and hypo- 
xanthine and on the structurally related 
2-deoxypurines (4). Although these com- 
pounds are relatively weak competitive 
inhibitors of [3H]diazepam binding in 
vitro, they appear to exist in the brain in 
high concentrations (5) that increase 
severalfold when brain slices are sub- 
jected to depolarizing stimuli (6).  

The major actions of the benzodi- 
azepines include anticonvulsant, muscle 
relaxant, and anxiety-reducing effects 

I (7). A putative endogenous ligand must 
demonstrate pharmacological, neuro- 
physiological, and behavioral proper- 
ties similar to those of the benzodiaze- 
pines. Large doses of purines antagonize 
pentylenetetrazole-induced seizures in 
mice in a dose-dependent manner (8). 

Inosine applied by microiontophoresis or 
pressure injection to cultured mouse spi- 
nal cord neurons elicited a rapidly desen- 
sitizing excitatory response that showed 
cross-desensitization with benzodiaze- 
pines and a nondesensitizing inhibitory 
response that was blocked by ben- 
zodiazepines (9). Inosine antagonized 
the y-aminobutyric acid (GABA)-mi- 
metic action of diazepam in a model sys- 
tem in which electrical stimulation of the 
globus pallidus caused head turning in 
rats (10). These lines of evidence support 
the view that purines have a functional 
role in benzodiazepine-mediated actions. 
Since the most specific and clinically ap- 
plicable property of the benzodiazepines 
is their anxiety-reducing effect, a puta- 
tive endogenous ligand for the brain ben- 
zodiazepine binding site should provide 
some measure of anxiolytic action. We 
have developed a simple, automated, 
one-parameter test for the behavioral ef- 
fects of benzodiazepines in mice (11) and 
now report that the purines completely 
block the behavioral changes produced 
by diazepam at doses which by them- 
selves do not affect these behaviors. 

The test depends on the natural tend- 
ency of mice to explore a novel environ- 
ment, but to avoid a brightly lighted open 

SCIENCE, VOL. 211, 13 FEBRUARY 1981 0036-807518110213-0725$00.5010 Copyright O 1981 AAAS 725 



.-- 
Diazepam plus inosme 

Fig. 1. Inosine reverses the diazepam-induced 
increase in mouse exploratory behavior. 
Nafve mice were treated intraperitoneally 
with diazepam (2 mgikg) or vehicle 30 minutes 
before testing and by saline or inosine (2 to 
1000 mgikg) 10 minutes before testing. Num- 
bers below bars indicate dose of inosine in 
milligrams per kilogram. During a 10-minute 
test session, the frequency with which an indi- 
vidual mouse crossed the border between a 
brightly lighted open field and a dark enclosed 
area was measured. Inosine at doses of 10 to 
300 mglkg completely blocked the increase in 
activity by diazepam, and sedation was noted 
at higher doses. Values are expressed as 
means 2 standard errors (S.E.) for six mice 
in each dosage group; -P < .05; ' "P < .01; 
and ***P < .005, in comparison with diaze- 
pam plus saline. 

field. The testing apparatus (11) records 
the number of transitions made by a 
mouse between a highly illuminated 
open-field compartment and a dark, en- 
closed compartment. When benzodiaze- 
pines are administered, the number of 
such transitions is doubled. Although in- 
creased exploratory activity in a novel 
environment is only inferentially related 
to an antianxietv effect, the data on dose- 
response relations, rank-order poten- 
cies, and pharmacological specificity of 
benzodiazepines in our exploration ex- 
periments (11, 12) are similar to findings 
based on the more intricate animal anx- 
iety models in current use (13). 

Naive male Swiss-Webster mice (20 to 
25 g) were given an intraperitoneal dose 
of diazepam (Hoffmann-LaRoche; 2 
mg/kg in 2 percent ethyl alcohol and 4 
percent propylene glycol, in phosphate- 
buffered saline at p H  7.2), 30 minutes be- 
fore testing. Ten minutes before testing, 
inosine, 2-deoxyinosine, 2-deoxyguano- 
sine, 7-methylinosine (Sigma; in phos- 
phate-buffered saline at p H  7.2), or sa- 
line alone was administered intraperito- 
neally, at doses ranging from 2 to 1000 
mgikg. 

Inosine in doses of 10 to 300 mgikg re- 

versed the diazepam-induced increase in 
the number of transitions between com- 
partments (Fig. 1). 2-Deoxyinosine and 
2-deoxyguanosine at doses of 50 to 200 
mgikg also reversed the effect of diaze- 
pam (14). These doses were below the 
sedative range of inosine (500 to 1000 
mgikg), which significantly reduced be- 
havioral activity when administered ei- 
ther alone or with diazepam (15). No sig- 
nificant effect on the number of transi- 
tions was found when these purines were 
administered alone in the dose range 2 
to 300 mgikg (16). Administration of 7- 
methylinosine, which does not inhibit 
diazepam binding in brain tissue in vitro 
(17), had no effect on the diazepam-in- 
duced increase in transitions (I@, an in- 
dication that the purines are not influenc- 
ing behavior through nonspecific effects. 

Since large doses of purines produce 
sedative effects, and large doses of ben- 
zodiazepines have a sedative-hypnotic 
action (13), we examined the possibility 
that the purines interact synergistically 
with diazepam to produce a pharmaco- 
logical summation of the sedative effects 
of the two drugs. To test this possibility, 
we administered various doses of inosine 
with various doses of diazepam. If ino- 
sine and diazepam act synergistically, a 
smaller dose of the purine plus a larger 
dose of diazepam would produce the 
same effect as a larger dose of purine 
plus a smaller dose of diazepam. Alter- 
natively, if inosine and diazepam are an- 
tagonistic, larger doses of purine would 
be necessary to reverse larger doses of 
diazepam. The results of this experiment 
indicate an antagonistic relationship be- 
tween inosine and diazepam (Fig. 2); at 
5 mglkg diazepam, more inosine was re- 
quired to block the diazepam-induced in- 
crease in mouse exploratory activity 
than at 2 mgikg or 0.5 mgikg. 

The mechanism by which the various 
purines antagonize the benzodiazepine- 
induced increase in exploratory behavior 
is unclear. Although relatively high con- 
centrations of purine have been shown to 
competitively inhibit [3H]diazepam bind- 
ing to benzodiazepine receptors in vitro, 
it is unlikely that such concentrations are 
achieved in vivo at the doses used in the 
present study (10 to 300 mgikg, intra- 
peritoneally). The interaction between 
purine and benzodiazepine may occur di- 
rectly on the benzodiazepine-GABA- 
linked recognition site (9, 19, 20) or its 
related chloride ionophore (21), rather 
than on a separate benzodiazepine bind- 
ing site. 

Even though the behavior model em- 
ployed in this study is only theoretically 
related to human anxiety, it does appear 

lnosine (mglkg) 

Fig. 2. Antagonistic interactions between 
diazepam and inosine during exploratory be- 
havior in mice. Varying doses of inosine and 
diazepam were administered as described in 
Fig. 1 to test the alternate explanations of syn- 
ergistic versus antagonistic interactions of pu- 
rines with benzodiazepines. Doses of diaze- 
pam were (-) 2 mgikg, (- - -) 5 mgikg, 
and (--.--.--) 0.5 mgikg. Larger doses of 
inosine were required to block the effects of 
larger doses of diazepam, evidence that the 
interaction is pharmacologically antagonistic. 
Each point represents the mean * S.E. for 
six mice. "P  < .05; ""P < .01, in comparison 
with diazepam (2 mgikg) plus saline. 

to reflect benzodiazepine activity with as 
much pharmacological specificity as oth- 
er animal behavior models in current use 
(13). These experiments suggest that the 
naturally occurring purines, essential for 
many biological functions, may play a 
role in mediating behaviors that are sen- 
sitive to the anxiety-reducing actions of 
the benzodiazepines. 
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Tyrosine Administration Decreases Vulnerability to 
Ventricular Fibrillation in the Normal Canine Heart 

Abstract. Intravenous infusion of tyrosine (1,  2,  or 4 milligrams per kilogram) for 
20 to 30 minutes caused dose-dependent increases in the ventricular jibrillation 
threshold in normal dogs. Administration of valine, a neutral amino acid that com- 
petes with tyrosine for uptake at the blood-brain barrier, in a dose equimolar to the 
most effective dose of tyrosine, slightly decreased the ventricularjibrillation thresh- 
old when given alone and signiJicantly blocked elevation of the ventricularjibrillation 
threshold after tyrosine infusion. Hence, tyrosine, presumably acting in the central 
nervous system, can protect against certain ventricular arrhythmias. 

The sympathetic nervous system influ- 
ences cardiac susceptibility to ventricu- 
lar arrhythmias (1). Augmented sympa- 
thetic activity, whether elicited by elec- 
trical stimulation of the hypothalamus (2) 
or of the stellate ganglia (3) ,  predisposes 
the heart to diverse arrhythmias. Con- 
versely, reduction of sympathetic neural 
outflow, achieved either surgically (4) or 
pharmacologically (3, protects against 
arrhythmias. Cabot et al. (6)  demon- 
strated that the raphe nucleus inhibits 
sympathetic outflow in the pigeon. There 
is evidence that treatments that increase 
the release or postsynaptic effects of 
serotonin, the transmitter of raphe nucle- 

6 0  Saline 

60 1 Tyrosine, 1 mglkg 4 

I Tyrosine, 2 mglkg I 

Tyrosine, 4 mglkg 
9 0  
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Fig. 1. Effect of tyrosine on ventricular fibril- 
lation threshold (VFT).  Control VF threshold's 
were obtained for each dog. The dogs then re- 
ceived intravenous doses of tyrosine (1 mgikg, 
N = 5; 2 mgikg, N = 6; 4 mgikg, N = 6; or 
6 mgikg, N = 6 )  or vehicle (saline, N = a), 
and the VF threshold was determined at 30- 
minute intervals. Percent changes in VF 
threshold after tyrosine or saline administra- 
tion are graphed as means and standard errors 
of the means. 

us neurons (7) ,  diminish cardiovascular 
sympathetic outflow (8). Blatt et a / .  (9) 
showed that agents that produce an in- 
crease in brain serotonin protect the 
heart against ventricular fibrillation. 
Rabinowitz and Lown (10) found that ad- 
ministration of L-tryptophan, precursor 
to serotonin, decreases cardiac vulnera- 
bility to ventricular fibrillation ( V F ) ,  
probably by increasing brain serotonin 
release (11) and thereby reducing sympa- 
thetic neural outflow. 

Enhanced central catecholaminergic 
activity can also diminish sympathetic 
outflow (12). Drugs such as clonidine and 
a-methyldopa, which presumably act by 
stimulating a-noradrenergic receptors in 
the brainstem, decrease blood pressure 
in hypertensive animals and humans 
(13); moreover, clonidine also decreases 
vulnerability to V F  (14) and suppresses 
digitalis-induced arrhythmias (15). 

Norepinephrine synthesis (16), atla 
probably release (1 7 ) ,  in the brain can be 
accelerated by administering its pre- 
cursor, L-tyrosine, thereby augmenting 
saturation of the rate-limiting biosynthet- 
ic enzyme tyrosine hydroxylase. Tyro- 
sine administration increases brain levels 
of the norepinephrine metabolite meth- 
oxyhydroxyphenylglycol sulfate and de- 
creases blood pressure in spontaneously 
hypertensive rats (18). We hypothesized 
that administration of tyrosine to healthy 
dogs, by increasing central catechol- 
aminergic activity and thereby diminish- 
ing sympathetic neural outflow to the 
heart, would raise the threshold of vul- 
nerability and protect against V F .  

At least 4 days after arriving from the 
supplier, healthy mongrel dogs of either 
sex, weighing 9 to 22 kg, were anesthe- 
tized with a-chloralose (100 mgikg) with 
additional drug (50 mgikg) administered 
as needed to maintain a constant level of 
anesthesia. Experiments were initiated 
between 0830 and 0930 hours, at least 30 
minutes after induction of anesthesia. 
The animals were ventilated with a mix- 
ture of room air and 40 percent oxygen 
so that arterial oxygen tension was about 
100 mm-Hg. Arterial pH was maintained 
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