
cies on both islands; and G. igata is more 
common than on Hen and Little Barrier. 

Changes with time on another offshore 
island, Cuvier, are also instructive. Until 
1959 Cuvier supported cats, wild goats, 
and domestic stock animals, and at least 
five exotic bird species bred in the forest. 
After eradication of cats and goats and 
fencing of stock by 1964, a dense under- 
story regenerated, and the four Euro- 
pean exotics disappeared from forest, 
the Australian Z. lateralis nearly dis- 
appeared, and G. igata declined. These 
changes are the same as the ones ob- 
served when one goes from mainland 
forest to Little Barrier. 

From these facts we draw the follow- 
ing conclusions. 

1) Exotic species that successfully 
penetrate browsed mainland climax for- 
ests with decimated native bird commu- 
nities are excluded from unbrowsed is- 
land climax forests with intact native 
bird communities. We can speak with 
confidence of exclusion as opposed to 
nonarrival, because exotic species breed 
on Little Barrier immediately outside the 
forest. 

2) We accept that mammalian preda- 
tors are an important factor in the deci- 
mation of native birds, and hence in the 
success of exotic birds, in mainland for- 
est. However, predators are not the 
whole answer: exotics penetrate the for- 
ests of Lady Alice and Mauitaha despite 
these islands being as predator-free as 
Hen and more so than Little Barrier. 

3) Two observations suggest that the 
effect of browsing on mainland forest 
structure is also an important factor. 
First, Little Barrier's forest avifauna dif- 
fers from that of the mainland not only in 
the absence of exotic species but also in 
the altered relative abundances of native 
species, and these alterations are mostly 
ones expected from lack of browsing. 
Second, alterations in forest structure 
due to succession have allowed exotic 
bird species to enter forest on Lady 
Alice, and even more on Mauitaha. The 
changes in relative abundances of bird 
species, as one proceeds from Little Bar- 
rier or Hen to Lady Alice to Mauitaha, 
are qualitatively similar to the changes 
observed along a similar successional 
gradient on the mainland, where exotic 
bird species are most dominant in the 
most disturbed habitats (16). 

In short, we infer that exotic bird spe- 
cies were not able to achieve their pres- 
ent penetration into New Zealand forest 
until the forest structure had been dis- 
turbed by browsing and logging, or until 
native species had been decimated by 
predation, disease, and these habitat 
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changes. (The relative importance of 
these two factors remains unknown.) 
This conclusion suggests that control of 
introduced mammals is crucial to the fu- 
ture of New Zealand's surviving avi- 
fauna in native forest. 

JARED M. DIAMOND 
Department of Physiology, 
University of California Medical Center, 
Los Angeles 90024 

C. RICHARD VEITCH 
Wildlife Service, 
Department of Internal Affairs, 
P.O. Box 2220, Auckland, New Zealand 
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Associative Learning in Aplysia: 
Cellular Correlates Supporting a Conditioned Fear Hypothesis 

Abstract. Aversive associative learning in Aplysia californica survives restraint of 
the animal and surgical exposure of the central nervous system. The learning is ex- 
pressed in the intracellularly recorded activity of identified motor neurons mediating 
three dlyerent defensive behaviors: escape locomotion, inking, and siphon with- 
drawal. In each case, animals that had previously received paired training showed 
significant facilitation of synaptic input to  motor neurons during test stimulation in 
the presence of the conditioned stimulus. Animals without such training showed no  
facilitation of input to  the motor neurons. Resting potential and input resistance 
appeared unaffected by conditioning and were not altered by application of the con- 
ditioned stimulus. These results show that the conditioned facilitation of defensive 
responses cannot be explained by subthreshold actions of the conditioned stimulus 
on the motor neurons and support the hypothesis that Aplysia learn to  associate the 
conditioned stimulus with a fearlike central state. 

Aversive conditioning of Aplysia cali- 
fornica produces a learned response re- 
sembling conditioned fear in vertebrates. 
After a chemosensory conditioned stim- 
ulus (CS, shrimp extract) is paired with 
an aversive unconditioned stimulus (US, 
head shock) the CS becomes capable of 
enhancing defensive responses and re- 

ducing at least one appetitive response 
(1). Although one defensive behavior 
(head withdrawal) is directly elicited by 
the CS after training, three other defen- 
sive behaviors (escape locomotion, ink- 
ing, and siphon withdrawal) are not elic- 
ited by the CS, yet they are significantly 
facilitated if they are elicited by other 
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the CS on the motor neurons. Rather, 
the CS exerts a common action onto all 
these defensive response systems at sites 
central to the motor neurons. 

Forty-one Aplysia californica (100 to 
400 g) were studied. All animals first re- 
ceived six to nine trials of either paired 
or specifically unpaired (control) training 
as previously described (1). Briefly, the 
shrimp CS was applied for 90 seconds. 
Sixty seconds after CS onset, the US (a 
450-mA shock to the head) was applied 
for 30 seconds to paired animals. Un- 
paired animals received the same CS and 
US separated by 90 minutes. The inter- 
trial interval was 3 hours. Eighteen hours 
after training, we examined the motor 
systems of escape locomotion, inking, 
and siphon withdrawal in a modified 
"split-foot" preparation (2, 3), which 
permitted intracellular recording from 
identified motor neurons for each re- 
sponse during behavioral testing. Each 
animal was coded so that during dis- 
section and experimentation the experi- 
menter did not know the animal's train- 
ing history. 

To study escape locomotion, we si- 
multaneously recorded the intracellular 
activity of identified motor neurons (in 
the pedal ganglia) that participate in es- 
cape locomotion (2) and the movements 
of the foot during each step (with a ten- 
sion transducer). The CS was applied to 
the head (rhinophores and tentacles) for 
1 minute, and then escape was triggered 
by delivering a weak electrical shock to 
the tail (4). The CS remained present 
throughout the ensuing 5-minute test pe- 
riod. Examples of the results from a 
paired and an unpaired animal are shown 
in Fig. 1, A and B. In the presence of the 
CS, paired animals (N = 10) showed 
more steps [t(18) = 2.55, P <.01] and 
more action potential bursts in pedal mo- 
tor neurons [t(18) = 2.12, P < ,0251 than 
did unpaired animals (N = 10; Fig. 1, C 
and D). Moreover, application of the CS 
produced no significant alteration in the 
membrane potential of motor neurons in 
paired animals compared with unpaired 
animals. 

It is possible, however, that a direct 
subthreshold effect of the CS might be 
expressed as an elevation of input resist- 
ance in the motor neurons of paired ani- 
mals rather than as a change in mem- 
brane potential. To examine this possi- 
bility, in two additional experiments we 
monitored the input resistance of the mo- 
tor neurons with hyperpolarizing elec- 
tronic pulses injected into the soma be- 
fore, during, and after presentation of 
the CS in paired animals. We found that 
significant facilitation of the locomotor 
program (specific to the presence of the 

CS) was observed with no change in in- 
put resistance of the motor neurons. 
Thus the facilitation of pedal motor neu- 
ron output by the CS in paired animals is 
not likely to be explained by direct sub- 
threshold effects of the CS on the motor 
neurons (5). 

To study inking and siphon with- 
drawal, we recorded intracellularly from 
identified ink gland and siphon motor 
neurons in the abdominal ganglion of 15 
animals (6). We first applied a test stimu- 
lus (a weak electric shock) (7) to the tail 
and recorded the complex excitatory 
postsynaptic potential (EPSP) produced 
in the ink and siphon motor neurons. We 
then applied the CS to the head for 1 
minute and delivered a second test stim- 
ulus. The amplitude and duration of the 
test EPSP's (8) in the absence and in the 
presence of the CS were then compared 
for paired and unpaired animals. Ex- 
amples of the results are shown in Fig. 2, 
A and B. In the absence of the CS there 
were no significant differences between 
groups in the amplitude or duration of 
the complex EPSP's. In the presence of 
the CS, however, significant differences 
were observed (Fig. 2C). In paired ani- 
mals, the test EPSP was more than dou- 
bled in both ink gland and siphon motor 
neurons whereas in unpaired animals, 
the EPSP was on average smaller in the 
presence of the CS. That is, compared 
with the unpaired animals, paired ani- 
mals showed significantly greater facili- 
tation of input to both the ink gland 
[t(9) = 3.00, P < .01] and siphon motor 
neurons [t(8) = 2.74, P < .025]. The de- 
pression of test EPSP's in the presence 
of the CS in unpaired animals is probably 
due to habituation of the second test in- 
put, although this result is also consist- 
ent with the possibility that the unpaired 
animals are exhibiting a form of condi- 
tioned inhibition (Y). 

As in the locomotor system, there was 
no significant difference in the effects of 
the CS on membrane potential of either 
the ink gland or siphon motor neurons in 
paired and unpaired animals. The CS oc- 
casionally produced some depolarization 
(average, 5 mV), especially of ink gland 
motor neurons, but this effect was the 
same in paired and unpaired animals. 
Moreover, as in the pedal motor neu- 
rons, significant facilitation of the test 
EPSP was produced by the CS in the ab- 
sence of any change in input resistance 
or membrane potential (Fig. 2D). These 
results, like the previous findings on es- 
cape locomotion, show that the passive 
properties of the motor neurons (as re- 
flected in the resting potential and input 
resistance) are unchanged by condi- 
tioning. In addition, the CS presented 

alone does not produce any response in 
the motor neurons. Rather, the CS acts 
to enhance synaptic input to the motor 
neurons produced by stimuli that trigger 
defensive responses. 

The neuronal correlates of associative 
learning in Aplysia support and extend 
the conclusions derived from behavioral 
studies (1). (i) Significant correlates of 
the learning in three separate motor sys- 
tems provide an independent confir- 
mation on a cellular level for associa- 
tive learning in Aplysia and indicate the 
utility of molluscan preparations for cel- 
lular studies of associative learning (lo), 
(ii) We previously found that conditioned 
modulation of escape locomotion in 
Aplysia requires the presence of the CS 
(I). Consistent with this observation is 
our finding that neither the basic elec- 
trophysiological properties of the motor 
neurons nor the synaptic input are 
changed in paired animals compared 
with controls in the absence of the CS. 
(iii) The fact that the CS does not exert 
direct subthreshold effects on the motor 
neurons in the absence of a test stimulus 
supports the hypothesis that condi- 
tioning involves the learning of an asso- 
ciation between the CS and a modulatory 
state rather than specific motor re- 
sponses. (iv) The expression of the asso- 
ciative learning in identified neurons of 
several different motor systems promises 
to be useful in the search for cells that 
exert a common influence on each sys- 
tem and thus may ultimately facilitate 
the elucidation of the neural circuitry 
and cellular mechanisms underlying the 
conditioned central state. 

A conclusive evaluation of the mecha- 
nisms by which the conditioned fearlike 
state is expressed will require examina- 
tion of each component of these defen- 
sive stimulus-response pathways. The si- 
phon withdrawal system holds particular 
promise in this regard. Preliminary ex- 
periments (11) indicate that a significant 
fraction of the complex EPSP from tail 
a£Ferents may be monosynaptic to the si- 
phon motor neurons. A monosynaptic 
test system has proved extremely useful 
in analyzing the cellular and biophysical 
mechanisms of nonassociative learning 
in Aplysia (12); the possibility now exists 
that the consequences of associative 
learning can be examined on this level as 
well. 

THOMAS J. CAREW 
EDGAR T. WALTERS 

ERIC R. KANDEL 
Center for Ne~trobiology and Behavior, 
Departments of Physiology and 
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Associative Learning in Aplysia: 
Evidence for Conditioned Fear in an Invertebrate 

Abstract. Aversive classical conditioning of Aplysia californica, a gastropod mol- 
lusk suited for neurobiological study, produces a learned reaction to the chemo- 
sensory conditioned stimulus that is expressed as a marked facilitation of four de- 
fensive responses: two graded reflexes (head and siphon withdrawal), an all-or-none 
fixed act (inking), and a complex fired action pattern (escape locomotion). In addi- 
tion, the conditioned stimulus produces a concomitant depression of at least one 
appetitive response, feeding. These extensive and selective actions of the condi- 
tioned stimulus in Aplysia resemble the actions of conditioned fear stimuli in higher 
mammals and suggest that the functional equivalent of fear occurs in invertebrates 
and thus may be an adaptive mechanism that is widespread in the animal kingdom. 

It has recently proven possible to ana- seen in mammals after aversive condi- 
lyze the cellular mechanisms of nonas- tioning. 
sociative forms of learning in several Recently we found (4) that Aplysia 
simple invertebrate preparations (I). The californica can rapidly acquire a tempo- 
apparent generality of these mechanisms rally specific aversive reaction to a 
(2) has in turn encouraged the develop- chemosensory conditioned stimulus (CS) 
ment of invertebrate models for the paired with a noxious unconditioned 
study of mechanisms of associative stimulus (US). This learned reaction was 
learning. Four independent studies have expressed as a facilitation of escape lo- 
now shown that aversive associative comotion triggered in the presence of the 
learning occurs in gastropod mollusks, CS. Because the CS did not elicit obvi- 
animals that offer many advantages for ous conditioned responses after training, 
cellular neurobiological studies (3, 4 ) .  we proposed that the animals might have 
However, an analysis of the underlying learned to associate the CS not with spe- 
neuronal mechanisms and an assessment cific motor responses but instead with a 
of the generality of these mechanisms central defensive state that modulates 
will require an understanding of what the escape locomotion. To test this inter- 
animals actually learn during aversive pretation, we have examined the effect 
associative conditioning. In particular, of the CS on four defensive responses: 
one needs to know how the con- two graded reflex acts (head and siphon 
sequences of aversive conditioning are withdrawal), an all-or-none fixed act 
organized in these animals and the extent (inking), and a complex fixed action pat- 
to which these effects resemble those tern (escape locomotion). In addition we 

504 0036-807518110130-0504$00.5010 Copyright O 1981 AAAS 

have examined the effects of the CS on 
an appetitive behavior, feeding. We have 
found that aversive conditioning in Aply- 
sia produces a conditioned internal state 
which appears functionally equivalent 
to conditioned fear in mammals. 

One hundred and seventeen A,  califor- 
nica were studied. Animals were trained 
according to procedures previously de- 
scribed (4). Paired animals received the 
CS (shrimp extract for 90 seconds) 1 
minute before the onset of the US (elec- 
tric shock to the head for 30 seconds) (5). 
Unpaired controls received the same CS 
90 minutes after the US. In the experi- 
ments shown in Fig. 1, paired (N = 17) 
and unpaired (N = 16) animals received 
nine trials, three trials per day, with an 
intertrial interval of 3 hours. During 
training, all animals responded to the US 
with maximal withdrawal of the head; se- 
cretion of ink, opaline, and mucus; si- 
phon withdrawal; turning away from the 
shock, and (after a delay of several min- 
utes) escape locomotion. Animals were 
then tested 1 and 2 days after the last day 
of training (6) .  In each test session, the 
CS was delivered to the head and left 
in the chamber for the entire test period 
(6 minutes). In all tests, the observer 
was unaware of the identities of the 
animals. 

We first examined head withdrawal, 
the only overt response elicited by the 
CS after conditioning. We had not pre- 
viously seen significant differences be- 
tween paired and unpaired animals in the 
incidence of CS-evoked head with- 
drawals after conditioning (4), and we 
had observed that the CS produced weak 
withdrawals in untrained animals. To see 
if conditioning might produce a dif- 
ference in the intensity of head with- 
drawal to the CS, we rated the magni- 
tude of each withdrawal on a three-point 
scale: strong, weak, or no withdrawal. 
Significantly more paired animals with- 
drew strongly from the CS than unpaired 
animals did (Fig. 1A) (Fisher exact prob- 
ability test, P < .01). Similar differences 
were noted in separate experiments (7) 
(N = 12 per group) in which the ampli- 
tude of head withdrawal [in a restrained 
preparation (8)] was measured with a ten- 
sion transducer. Thus, although an un- 
conditioned head withdrawal response to 
the CS can be seen in both untrained and 
unpaired animals, aversive conditioning 
significantly facilitates the amplitude of 
this withdrawal in animals receiving 
paired training. 

Other defensive responses do not 
seem to be directly elicited by the CS af- 
ter training, but the effects of condi- 
tioning can be seen on these responses 
when test stimuli are used to trigger them 
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