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Phase Transitions, Critical 
Phenomena, and Instabilities 

Paul A. Fleury 

There are intimate relations among the 
physical properties of materials and the 
states of matter that comprise the materi- 
als. We are all familiar with the drastic 
differences in properties, for example, 
between the liquid and solid states of wa- 
ter. Although they are less familiar to 
most people than the liquid-solid transi- 
tion, many other types of state changes, 
or phase transitions, result in physical 

ior in the first derivatives of various ther- 
modynamic functions. In other cases 
(such as the onset of magnetism, super- 
fluidity, or phase separation in a fluid 
mixture) the new phase grows continu- 
ously and homogeneously from the old, 
so that many of the physical properties 
exhibit singular behavior in the vicinity 
of the transition. Such transitions are 
said to be second-order or continuous, 
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property changes that are no less spec- 
tacular. Properties such as magnetiza- 
tion, viscosity, and electrical conduc- 
tivity are observed to change by or- 
ders of magnitude in materials as they 
enter magnetic, superfluid, or metallic 
states, respectively. What causes such 
dramatic changes and how can they be 
understood? 

In some cases (such as the liquid-solid 
transition) the changes are abrupt, re- 
sulting from the free energy of a new 
phase falling below that of the old phase 
as some external parameter such as tem- 
perature is varied. Such transitions are 
discontinuous and are said to be first-or- 
der because of the discontinuous behav- 
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and this article is devoted exclusively to 
them. The diverging compressibility of a 
fluid, susceptibility of a magnet, dielec- 
tric constant of a ferroelectric all repre- 
sent singular behavior and arise from the 
cooperative participation of astronomi- 
cal numbers (- of microscopic par- 
ticles in altering the materials' mako- 
scopic properties. The singular behav- 
iors of such properties are not merely 
qualitatively similar for quite different 
physical systems (liquids, magnets, fer- 
roelectrics, superconductors), they are 
often quantitatively identical. How to 
understand and relate these similarities 
in systems whose microscopic constitu- 
ents are as different as, for example, heli- 

um atoms and liquid-crystal molecules 
has been a challenge to science for many 
decades. 

Thanks to the vigorous efforts of theo- 
rists and experimentalists over the past 
15 years, we are now in a position to un- 
derstand these diverse phenomena from 
a unified viewpoint and even to make 
quantitative predictions for the behavior 
of yet untested systems. This article de- 
scribes some of the theoretical concepts 
and experimental findings that have led 
to our present unified view of phase tran- 
sitions and critical phenomena in equilib- 
rium systems. It also indicates some pos- 
sible avenues for extension of this view 
to strongly driven systems far from equi- 
librium. The study of phase transitions 
and critical phenomena presents the sci- 
entific challenge of relating singular mac- 
roscopic properties to interactions 
among very large numbers (- of 
microscopic particles, but it is also of 
technological importance in relation to 
the possible control and engineering of 
properties of materials that might rest on 
a proper understanding of their micro- 
scopic origins. For example, greatly en- 
hanced performance of spinodally de- 
composed alloys, high-temperature su- 
perconductors, acousto-optic modula- 
tors, magnetic ferrites, and so on are 
now understood to arise from the phe- 
nomena that are responsible for phase 
transitions in these materials. 

This article necessarily treats many of 
the sophisticated and subtle concepts as- 
sociated with the modern theory of criti- 
cal phenomena in a rather superficial 
manner. A number of excellent critical 
reviews (1-6) of various scientific as- 
pects of this field are available to those 
interested in exploring in more depth the 
concepts touched on here. Further, the 
activity in these fields over the past dec- 
ade has been so vigorous and the con- 
tributors so numerous that exhaustive ci- 
tation is impossible in an article of this 
length. Instead, selected examples are 
presented to illustrate the major ideas 
and advances. This selection is, of 
course, subjective and carries an implicit 
apology to the many fine researchers 
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whose work is not explicitly discussed. 
I will begin with the classical mean 

field theory of phase transitions, which 
serves to define many of the fundamental 
terms (order parameter, correlation 
function, critical exponent, and so on) 
and to provide a framework for dis- 
cussing the more subtle effects (due to 
fluctuations) central to our present un- 
derstanding. I will then discuss some ex- 
perimentally observed departures from 
the predictions of mean field theory, and 
modern developments such as the scal- 
ing and renormalization group theories, 
which epitomize the present level of our 
understanding in this field. Finally, I will 
mention the appearance of order and the 
rule of fluctuations in systems driven far 
from equilibrium, such as lasers, hydro- 
dynamic instabilities, and electronic de- 
vices. Such systems present many at- 
tractive analogies with continuous equi- 
librium phase transitions, which excites 
the hope that some of the powerful tech- 
niques so successful in the latter field 
might fruitfully be brought to bear on the 
former. 

Mean Field Theory 

All phase transitions considered here 
represent the development of long-range 
order in some physical property (7). This 
property may be utilized as a quan- 
titative measure of the development of 
the new phase and is called the order pa- 
rameter, denoted here as +,. In a ferro- 
magnet +, represents the magnetization. 
In a liquid crystal it might denote the op- 
tical birefringence. The order parameter 
is, by definition, zero on one side of the 
transition and nonzero on the other side. 
If the order parameter increases continu- 
ously from zero in the new phase, the 
transition is said to be continuous or sec- 
ond-order; if discontinuously, it is said to 
be discontinuous or first-order (Fig. 1). 
The appearance of order can be viewed 
as the breaking of a symmetry. For ex- 
ample, a structural phase transition be- 
tween a nonpiezoelectric and a ferroelec- 
tric state in a crystal represents the 
breaking of inversion symmetry. In 
group theoretical language, the ordered 
(or lower symmetry) phase is then 
viewed as a subgroup of the parent (or 
higher symmetry) phase, with the re- 
duced set of symmetry operations being 
represented by the order parameter. In 
general, the order parameter need not be 
a simple, one-component scalar quanti- 
ty; it may be quite complicated depend- 
ing on the complexity of the two phases 
that it connects. The complexity of the 
order parameter is related to the number 
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Fig. 1. Schematic showing the behavior of the 
order parameter, &,, near the critical temper- 
ature, T,, in first- and second-order phase 
transitions. 

of components, n, needed to specify it 
completely. 

To examine the development of order, 
consider a large collection, No,  of micro- 
scopic objects, each describable by a dy- 
namic variable +,(r,, t ) ,  which may repre- 
sent a local spin variable, an array of 
atomic displacements, and so on. If we 
choose I$+ correctly, the macroscopic or- 
der parameter (+) can be expressed as 

where ()  represents an average over a 
statistical ensemble. For example, in a 
ferromagnet & represents the direction 

Fig. 2. Behavior of the static susceptibility, X, 
the specific heat, C,, and the soft-mode fre- 
quency, ol, near T, for a second-order or con- 
tinuous phase transition. 

in space of an elemental magnetic or spin 
vector. The condition (+) # 0 expresses 
the fact that there is some net alignment 
of these spins even in the absence of an 
external field, in the ordered phase. 
Physically, this must come about 
through some interactions among the el- 
emental spins, which somehow develop 
a cooperativity such that long-range or- 
der results. Otherwise there could be no 
finite average value for 9 on a macro- 
scopic scale. The simplest description of 
this cooperativity is known as mean field 
theory. It assumes that the behavior of a 
given +i can be calculated from its re- 
sponse to the local field generated by the 
average spin configuration of its neigh- 
bors-that is, by the mean field that they 
generate. In this view, deviations from 
this average (fluctuations) are ignored. It 
then follows that the energy difference 
between the ordered and disordered 
phases is expressible solely in terms of 
(4) = +,. The mean field (or Landau) ex- 
pansion for this free energy, A, may be 
written (1 -3) 

where a ,  b, c, . . . are analytic functions 
of T - T, (the temperature and critical 
temperature, respectively) and we have 
considered a case where symmetry for- 
bids odd powers. 

It is rigorously true that for an equilib- 
rium system, A can be expressed in 
terms of (V) 's .  Mean field theory 
amounts to the assumption that 
(+)" = ( V ) .  From the above form for 
A-since it is a thermodynamic quanti- 
ty-a variety of important and directly 
measurable physical properties may be 
calculated. For example, the value of 9, 
is simply obtained by differentiating A 
and applying stability criteria (6). The 
equation aA/a+, = 0 = (2a + 4b+02)+o 
admits of two solutions: +, = 0 and 
+02 = -a/2b. Thus where a = a ' r  [with 
T 3 (T - Tc)/Tc], one sees immediately 
that when T, is approached from below, 
+, vanishes as a power law in the re- 
duced temperature, 7. That is, +, 
= C ~ T ~ Y  The quantity P is the critical 
exponent for the order parameter; its 
value in mean field theory is 112. For 
many types of transitions it is subject to 
direct experimental tests (for instance, 
by measuring macroscopic magnetiza- 
tion, polarization, birefringence, or den- 
sity). Only in special circumstances- 
now largely understood-is the mean 
field value of ,O actually observed. The 
same may be said for other important 
physical quantities that exhibit singular 
behavior as 171 -, 0. Perhaps the two 
most familiar of these are the static sus- 
ceptibility x (with critical exponent, y) 
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and the specific heat C, (with critical ex- 
ponent, a )  (Fig. 2). 

The static susceptibility (6) is defined 
as 

Thus in mean field theory x - T - I  - T-, 

so that x diverges on approach to T, from 
either side with the same critical ex- 
ponent, y = 1. Note that the amplitude 
of the divergence differs by a factor of 
2 on either side. 

In a more general context, it is useful 
to define a space- and time-dependent 
correlation function C(r, t) of the order 
parameter 

( r  t) = ( ( r  - r ,  t - t l ) (  t ) )  (4) 

whose Fourier transform is closely re- 
lated to the dynamic susceptibility (6) 
~ ( q ,  o). Equation 4 expresses the likeli- 
hood that if the microscopic order pa- 
rameter $ has a given value at some 
point in spacer' and time t', it will have a 
value at some other point (r' - r) and 
time (ti - t). Of particular importance is 
the equal-time correlation function 
C(r, 0), which expresses the spatial ex- 
tent of correlations in the order parame- 
ter. For small distances, r ,  the precise 
form taken by C(r) will depend on the 
microscopic interactions mentioned ear- 
lier, but usually (8) C(r) will decay ex- 
ponentially at large distances 

The characteristic decay distance, 6, is 
called the correlation length and is an- 
other of the important singular quan- 
tities. Simple arguments show that in 
mean field theory, the correlation length 
diverges with a critical exponent, U, 

which has the value 112 

The most direct experimental probes (6) 
of 5, and more generally of C(r, t), are 
scattering experiments. 

Within mean field theory the specific 
heat, C,, is discontinuous but not diver- 
gent at T,, corresponding to the value of 
a = 0 for its critical exponent. It may al- 
so be expressed in terms of the equal- 
time autocorrelation function for the en- 
ergy density, which involves higher pow- 
ers of $ than does Eq. 4. The corre- 
spording general space- and time-depen- 
dent correlation functions have not been 
calculated in as much detail as C(r, 0), 
although some experiments (light scat- 

tering, ultrasonic attenuation) measure 
certain aspects of them. 

Although mean field theory contains 
most of the concepts (order parameter, 
correlation length, critical exponents) re- 
quired for a unifying discussion of phase 
transitions, it falls severely short in that 
it neglects correlated fluctuations in the 
order parameter and, of course, their 
considerable influence on critical behav- 
ior. It is particularly striking that in the 
absence of fluctuation effects, all contin- 
uous phase transitions would have pre- 
cisely the same singular behavior; that 
is, the same critical exponents, a = 0, 
y = 1, p = 1/2, and u = 1/2, are pre- 
dicted for all transitions. 

Fig. 3. Comparison of experimental measure- 
ments (points) of the reduced magnetization, 
g(O), with predictions from the magnetic equa- 
tion of state (solid line) expressed in terms of 
statically scaled variables. The parameter 0 
locates points in the temperature-magnetic 
field plane along thermodynamic paths of con- 
stant specific heat [modified from (9)l. 
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Fig. 4. Behavior of scaled chemical potential 
versus scaled temperature for five dzerent  
fluids near their liquid-vapor critical points: 
(0) helium-3, (@) helium-4, (0) xenon, (V) 
carbon dioxide, and (A) water [modified from 
(lo)]. 

Indeed, for many decades this was 
generally believed to be the case (6), 
even to the extent that experiments on 
the liquid-vapor coexistence curve near 
the critical point of a fluid were consid- 
ered to be in error when they produced 
values of P closer to 113 than to 112. "Er- 
ror" in this sense need not impugn the 
ability of the experimenter involved; it 
might be taken to mean that the system 
has not been probed sufficiently close to 
T,, so that the asymptotic behavior pre- 
dicted by theory for vanishing T might lie 
undiscovered. This emphasizes that crit- 
ical exponents are meant to describe the 
behavior of the leading singularity, and 
such a description is asymptotically valid 
only at sufficiently small T .  Just how 
small this is-or what the extent of the 
asymptotic region is-has no general an- 
swer even today, although renormaliza- 
tion group theory makes predictions in 
some specific cases. 

Failures of Mean Field Theory 

Detailed accounts of experimental ob- 
servations in conflict with mean field the- 
ory, beginning in the 1950's, have been 
published (6). Suffice it to say here that a 
variety of increasingly precise measure- 
ments in magnets, superfluids, liquid 
mixtures, and so on of order parameters, 
susceptibilities, correlation lengths, and 
specific heats have yielded values for 
critical exponents that differ significantly 
from those predicted by mean field theo- 
ry. 

Despite these differences, there are 
several types of phase transitions (in 
physical systems as different as a fluid 
and a magnet) for which the same critical 
exponent values have been found. Thus 
the absolute universality predicted by 
mean field theory is in reality replaced by 
a more limited kind of universal critical 
behavior. Systems that exhibit the same 
critical behavior are said to belong to the 
same universality class. 

From a theoretical point of view, 
a system's universality class (2) is de- 
fined through the Hamiltonian function 
that describes it, most especially through 
the Hamiltonian's symmetry properties 
(that is, the power and combinations 
of $, terms; the dimensionality of space, 
d; and the number, n ,  of components 
of +). According to this universality 
hypothesis, terms added to the Hamil- 
tonian (or parameters adjusted in an 
experiment) that do not alter its 
symmetry should not change the criti- 
cal behavior (although they may shift 
Tc).  For example, the critical expon- 
ents describing the superfluid transi- 
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Fig. 5 (left). Diagram of the (d,n) plane. Spe- 
cific systems of interest are identified as 
points or squares, including the two-dimen- 
sional (d = 2) Ising (n = 1) model, which was 
solved exactly by Onsager [modified from 
(2) ] .  Fig. 6 (right). Squared order parame- 
ter as determined by neutron scattering for 
transitions of differing spatial dimensionality, d ,  and marginal dimensionality, d*. For d > d* a 
straight line-indicative of mean field behavior-is expected and observed for (1 - TIT,) + 0. 
As d* becomes larger relative to d, the increasing departure from mean field theory is evident 
[modified from (8)]. 

tion in liquid helium are expected to be 
unaffected by variations in the pressure. 

Predating the universality hypothesis, 
which relates critical behaviors for dif- 
ferent physical systems, a separate hy- 
potheses called scaling was introduced 
which permits determination of the val- 
ues of some critical exponents given a 
knowledge of other critical exponents for 
the same system (1-4). For example, the 
scaling prediction a + 2p + y = 2 is 
satisfied within mean field theory, but it 
has been verified as well in systems 
where the individual critical exponents 
differ substantially from their mean field 
values. The scaling relations among criti- 
cal exponents follow from the hypothesis 
that the free energy and correlation func- 
tion are homogeneous functions of ther- 
modynamic variables that can be scaled 
in terms of a single characteristic length 
(the correlation length, 5). Scaling rela- 
tions should be valid regardless of the 
universality class to which the system 
belongs. Considerable experimental ef- 
fort has been devoted to testing scaling 
and homogeneity properties. Examples 
of particular beauty are depicted in Fig. 3 
for the ferromagnetic transition in CrBr, 
(9) and in Fig. 4 for the critical points of 
several fluids (10). 

Experiments on static singular behav- 
iors near ordinary critical points have re- 
peatedly confirmed the scaling and uni- 
versality hypotheses. Considerably more 
complex behaviors are currently under 
consideration in the more exotic situa- 
tions broadly referred to as multicritical 
phenomena. These occur at points of in- 

tersection of two or more paths of singu- 
larities in the thermodynamic plane, and 
they continue to provide formidable 
challenges to theorists and experiment- 
ers alike; however, they are beyond the 
scope of this article (2, 4, 5). 

Renormalization Group Approach 

Scaling and universality represent 
progress beyond mean field theory, but 
they are really hypotheses rather than 
proper theories, and in themselves they 
provide no general method for predicting 
or calculating the values of critical ex- 
ponents. A number of theoretical tech- 
niques (high temperature series, Pade 
approximants, and so on) have been de- 
vised over the years to calculate approxi- 
mately the exponents for particular mod- 
els (6) and a very few exactly soluble 
models (such as the two-dimensional Is- 
ing model) have been found for phase 
transitions. Nevertheless, until Wilson 
introduced the renormalization group 
viewpoint, the theoretical state of affairs 
in phase transitions and critical phenom- 
ena remained less than satisfactory. To 
gain a reasonable appreciation of this 
viewpoint, one should consult reviews 
:2,5, 11) and books (3,4) .  on the subject. 
In this article I can only mention some of 
its more transparent qualitative features. 
One important feature is the recognition 
of the so-called marginal dimensionality, 
d*. Generally, a phase transition system 
is characterized by the dimensionality of 
space, d (which, of course, need not be 

three for mathematical models), and the 
number of components, n,  of the order 
parameter. In the space spanned by n 
and d several familiar and sometimes ex- 
actly soluble models occupy points of 
particular significance. For mathematical 
convenience one may regard both n and 
d as continuous variables and examine 
the effects of this variation on critical be- 
havior (Fig. 5). 

Recall that a major theoretical chal- 
lenge is the proper treatment of fluctua- 
tions. The stronger the fluctuations, the 
less well does the mean field describe the 
behavior of the system as a whole. The 
relative importance of fluctuations can 
be estimated by a method due to Ginz- 
burg (12). For mean field theory to re- 
main valid below T,, the fluctuations 6J, 
in J, must remain small compared to its 
mean value 

Fluctuations are correlated only over 
distances of order 6, so it is proper to 
take the above averages over a correla- 
tion volume a, (which, of course, di- 
verges as T + 0). It is straightforward to 
show that the Ginzburg criterion can be 
rewritten (8) 

where we have used the fact that 
a, = td. This requires for arbitrarily 
small T that (y + 2p) vd, or equiva- 
lently that d r (y + 2p)lv.  In mean field 
theory (y + 2p)lv = 4 .  Therefore the 
neglect of fluctuations in mean field theo- 
ry is self-consistent only for d > 4. 
When d = 4 we have marginal dimen- 
sionality, d* = d, wherein mean field 
theory almost works and only weak (usu- 
ally logarithmic) corrections are ex- 
pected and observed. F o r d  < d* we ex- 
pect scaling relations to be valid. In 
some situations (8), such as in strongly 
anisotropic systems, a, grows as td + 

rather than as td. The condition rn > 0 
means that the correlation volume grows 
more rapidly than td. Consequently, the 
fluctuation effects are averaged over a 
greater volume and are suppressed, so 
that mean field theory becomes a better 
approximation. A nonzero m means that 
d i n  Eq. 7 is replaced by d + rn and has 
the effect of pushing d* below 4 and into 
the region of real physical systems. The 
appropriate value of rn for a system de- 
pends on the form and range of its micro- 
scopic interactions (8). For interactions 
of short range, rn = 0, so that d* = 4. 
Thus a two-dimensional (d = 2) Ising 
system, like K,CoF,, where d* - d is 
large, should have strong fluctuations 
and a marked non-mean field behavior. 
A three-dimensional Ising system has 
d* = 4 > d = 3 and exhibits a less 



strong but still significant departure from 
mean field theory. A dipolar uniaxial sys- 
tem can be shown to have m = 1, so that 
d* = 3. Consequently, a three-dimen- 
sional uniaxial crystal has d* = d = 3 
and only logarithmic departures from 
mean field theory are expected. Obser- 
vations bear out expectations for LiTbF, 
quantitatively (13). For still other sys- 
tems m = 2 so that d* = 2. Several 
structural phase transitions in three-di- 
mensional crystals fall into this class. 
Whenever d > d*, mean field theory is 
expected to be valid. Figure 6 shows a 
striking experimental confirmation of 
these ideas (8). 

The recognition of marginal dimen- 
sionality, above which mean field theory 
is valid, was incorporated by K. Wilson 
and others into a formalism treating d as 
a continuous variable and E = 4 - d as 
an expansion parameter. As a result, val- 
ues of critical exponents could be calcu- 
lated to various orders in E for a number 
of systems. Typical results (2) are: 

For a three-dimensional system, set- 
ting E = 1 at the end of the perturbation 
procedure may seem mathematically 
foolhardy, but it prodhces quite reason- 
able agreement with experiments. For 
example, calculations (14) of the critical 
exponents y ,  77, and v for the three-di- 
mensional Ising model are in excellent 
agreement with experiments on binary 
liquid mixtures (15). 

This calculational method is only one 
of the significant contributions of the 
Wilson theory. Another is certainly the 
generalization in viewpoint to consider 
not merely one Hamiltonian for a given 
system, but a whole Hamiltonian space 
in which one moves about by applying 
well-prescribed mathematical transfor- 
mations. If executed in real-space vari- 
ables, these transformations can be 
viewed as summing over larger and 
larger volumes, so as to retain the essen- 
tial interactions responsible for ordering 
while rescaling space at each step in a 
consistent way. Whether carried out in 
real space or in some other convenient 
mathematical framework, the generation 
of a new Hamiltonian from the old by ap- 
plication of a transformation operator fi 
can be schematically written 

Fig. 7. Behavior of 
scaled critical fre- 
quency, T*, for sever- 
al fluids and fluid 
mixtures versus qt, 
where q is the scatter- 
ing wave vector and 4 
the correlation length. 
The dashed curve 
nearly covered by 
data points represents 
theory [modified from 
(18)l. 
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Fig. 8. Schematic of the light- 
scattering spectrum near T, E 
observed in lead germanate, 3 
showing the soft-mode (W) g 0,5 - 
and acoustic phonon (B) fea- 
tures coupled with the dynarn- " 
ic central peak (D) and a singu- 
lar impurity-induced central 2 
peak (S)  [modified from (22)]. 

Successive applications of the re- 
normalization group operator R can be 
thought of as generating "flows" in this 
space of Hamiltonians. Hamiltonians (or 
points) that may appear initially quite 
different will converge on the same fixed 
point, provided their initial differences 
can be expressed solely in terms of so- 
called irrelevant variables. A fixed-point 
Hamiltonian has the property (2, 4) 

The resulting eigenproblem generates 
eigenvalues that turn out to be the criti- 
cal exponents. While fill renormaliza- 
tion group procedure is overwhelming to 
most of us, we may appreciate its power 
and beauty to some degree without ac- 
tually having to indulge in it. Specifical- 
ly, the renormalization group provides a 
mathematical mechanism and a physical 
foundation for both scaling and univer- 
sality. And, of course, it provides a 
means of calculating scaling functions as 
well as critical exponents. It must be re- 
garded as one of the major theoretical 
advances in contemporary condensed- 
matter physics. 

Dynamical Aspects 

Thus far I have considered only the 
static aspects of critical phenomena- 
those describing equilibrium situations 

and expressible in terms of equal-time 
correlation functions. Considerably 
more challenging are the dynamics of 
phase transitions (5). Most generally, dy- 
namics require the calculation of space- 
and time-dependent correlations on the 
theoretical side and time-dependent or 
nonequilibrium measurements on the ex- 
perimental side. Although critical dy- 
namics may be explored by macroscopic 
measurements of transport coefficients 
(16) (such as thermal conductivity or vis- 
cosity), more complete dynamic infor- 
mation is available from direct measure- 
ments of the time dependences of fluctu- 
ations in the order parameter and related 
quantities by inelastic scattering experi- 
ments (17). On approach to T, the char- 
acteristic frequency of the fluctuations in 
$ decreases, a manifestation of the in- 
creasing susceptibility which the system 
exhibits toward distorting into the new 
phase. This decrease is called critical 
slowing down. 

The dynamic equivalent (5) of the stat- 
ic mean field theory is the so-called van 
Hove or conventional theory of critical 
slowing down. It asserts that no singular 
behavior develops in any transport or ki- 
netic coefficient, so that the slowing 
down may be expressed solely in terms 
of static critical exponents (most espe- 
cially through the static susceptibility). 
Since the characteristic time for order 
parameter (5) relaxation is a ratio of a 



static susceptibility and a transport or ki. 
netic coefficient, the observation of sin- 
gular behavior in a transport coefficient 
signals a failure of the conventional theo- 
ry. 

Experimental observations of singular 
thermal conductivity in the superfluid 
transition and anomalous Rayleigh scat- 
tering line widths (18) in fluids and mix- 
tures near their critical points, for ex- 
ample, have confirmed the breakdown of 
conventional theory. Theoretical refine- 
ments began by considering interactions 
of the slow order parameter mode with 
other possible slow modes of the system. 
These so-called mode coupling theories 
(19) of dynamic critical behavior repre- 
sented approximate calculations, which 
were often in quite good agreement with 
experiment (Fig. 7). A more general ap- 
proach, called dynamic scaling (5), 
builds on the idea of a rescalable fre- 
quency, similar to the rescalable length 
in static scaling. While successful in 
many regards, dynamic scaling was nev- 
ertheless phenomenology, and it has re- 
cently been incorporated into dynamic 
generalizations of the renormalization 
group approach. 

Both dynamic scaling and the re- 
normalization group have shown that dy- 
namic universality classes require, in ad- 
dition to the specification of n and d, a 
specification of the conservation laws 
and Poisson bracket relations among the 
order parameter and the conserved den- 
sities (5). Thus dynamic critical ex- 
ponents cannot, in general, be calculated 
from static critical exponents. 

Modern dynamic theories have been 
successful for some systems-particular- 
ly fluids and fluid mixtures. But the situa- 
tion is less satisfactory for other cases 
such as structural phase transitions. Let 
us now examine briefly some examples 
of the experimental information obtained 
in both areas. 

Inelastic scattering experiments (with 
photons or neutrons) are nearly ideally 
suited to the study of fluctuation dynam- 
ics because they provide a direct mea- 
sure of the space- and time-dependent 
correlation functions of central interest 
(17). The scattered spectrum, S(q, w), is 
just proportional to the number of parti., 
cles scattered within a given energy or 
frequency interval for fixed momentum 
transfer, fiq (fi is Planck's constant di- 
vided by 277). In many cases it may be 
expressed as 

S(q, w) = constant X Im ~ ( q ,  o )  

where Im ~ ( q ,  o )  is the imaginary part of 
the Fourier transform of the space- and 
time-dependent susceptibility referred to 
after Eq. 4. Thus the critical behavior in 
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Fig. 9. The simplest hydrodynamic instability 
is the onset of convection. At the left is a 
schematic end-on view of a fluid layer sub- 
jected to an adverse temperature gradient, 
and the flow pattern achieved above R,. The 
graph at the right shows the normalized verti- 
cal heat transport, N, as a function of normal- 
ized imposed gradient, R ,  illustrating the on- 
set of convective flow for R > R,. 

order parameter fluctuations will be dra- 
matically manifested in the spectrum. 

For example, critical slowing down 
can be directly measured from the char- 
acteristic frequency of S(q, o )  as T ap- 
proaches T,. In the simplest, quasi- 
harmonic situations (20) S(q, o )  can be 
written in a Lorentzian form 

In the simplest undamped (r, = 0) 
cases, this can be described by a power 
law behavior in o, = 7" and corresponds 
to the simple "soft-mode" picture which 
has been so useful for sorting out ferro- 
electric and other structural phase transi- 
tions. However, in general, the spectral 
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Fig. 10. Power spectral densities of fop plate 
temperature fluctuations in a fluid layer well 
above convective onset. Note the logarithmic 
scales of the vertical axes. The sharp frequen- 
cy in (a) corresponds to time-periodic flow, 
which first becomes more complex but re- 
mains periodic (b) and then develops time 
aperiodicity or turbulence as R is increased 
between 9 and 15R, [courtesy of G. Ahlers 
(unpublished data)]. 

shape of S(q, w) does not return this sim- 
plicity very close to T,, where mode cou- 
pling effects are dominant. 

For fluids and critical mixtures the the- 
oretical predictions of critical slowing 
down are impressively borne out by ex- 
periment (15) (Fig. 7). For structural 
phase transitions, on the other hand, 
where the slow mode is an optic or 
acoustic phonon, the spectra are usually 
much more complicated. Phonon inter- 
actions, anharmonicities, and even crys- 
talline defects have been invoked to ac- 
count for these complications (21). No 
simple or general explanation has proved 
satisfactory, and scattering experiments 
have identified several different mecha- 
nisms operative in different situations 
(20). Thus far, singular central peaks 
prototypical of the breakdown in quasi- 
harmonic behavior have been experi- 
mentally identified from the following 
mechanisms: (i) entropy fluctuations, (ii) 
phonon density fluctuations, (iii) in- 
trinsic annealable defects, and (iv) ex- 
trinsic nonannealable defects. Particular- 
ly illustrative are light (20, 22) and neu- 
tron scattering (23) results for the dis- 
placive ferroelectric transition in lead 
germanate. It belongs to the uniaxial 
dipolar static universality class whose 
marginal dimensionality is d* = 3. The 
initial neutron studies (23) revealed an 
unresolved singular central peak. Higher 
resolution experiments with light scatter- 
ing (22) showed that the central peak in 
lead germanate is composed of two sin- 
gular components, one static and one dy- 
namic (Fig. 8). The static peak diverges 
strongly near T, with a power law depen- 
dence and has been ascribed to static 
symmetry-breaking defects. The in- 
tensity divergence in the dynamic peak is 
much weaker than that in the static peak 
and is consistent with the logarithmic be- 
havior predicted for a dx = 3 system 
from renormalization group theory. The 
dynamic peak is i~trinsic in origin, aris- 
ing from nonlinear interactions of the 
soft mode with both acoustic phonons 
and multiphonon processes. The latter 
should represent a fairly common mech- 
anism for several types of structural 
transitions. Firm theoretical predictions 
remain to be developed. Similarly, while 
the static central peak probably arises 
from defects, intriguing questions re- 
garding the influence of defects (24) on 
critical dynamics remain to be ":lily ex- 
plored. 

As far as critical dynamics are con- 
cerned, the major remaining challenges 
revolve about the difficulty for the exper- 
imentalist in measuring the universal or 
intrinsic dynamics in nonideal solid-state 
systems and for the theorist in calcu- 
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lating the nonuniversal and extrinsic 
complications in the same systems, 
Fluids, fluid mixtures, and superfluids 
have shown theory and experiment to 
agree (18, 25). More work remains for 
solid-state dynamics. 

Instabilities in Systems Far from 

Equilibrium 

Within the past few years an attack 
has been mounted on another class of 
problems involving fluctuations and in- 
stabilities. It was inspired partly by anal- 
ogies between phase transitions in equi- 
librium systems and instabilities in sys- 
tems far from equilibrium (26-28) such as 
lasers at threshold, fluid flows, and elec- 
tronic devices. 

For illustrative purposes I will consid- 
er  only the simplest hydrodynamic insta- 
bility-the Rayleigh-Benard problem of 
the onset of convection in a horizontal 
fluid layer subjected to a vertical temper- 
ature gradient (Fig. 9). The dimension- 
less heat flow, normalized by the thermal 
conductivity, is expressed by the Nus- 
selt number, N ,  and the dimensionless 
temperature gradient is expressed by 
the Rayleigh number, R = g/3h3ATIKv, 
where g is the gravitational acceleration, 
h the layer thickness, AT the temper- 
ature difference, K the thermal dif- 
fusivity, v the kinematic viscosity, and /3 
the thermal expansion coefficient. Figure 
9 shows a typical plot of N versus R for 
such a fluid layer. For R < R,, N = 1, 
and the heat flow is by conduction alone. 
At R, convective flow sets in and N in- 
creases continuously, reminiscent of the 
behavior for the order parameter in a 
continuous phase transition. The phys- 
ical origin of the finite threshold, R,, for 
convection lies in the competition be- 
tween the driving force provided by the 
thermal expansion coefficient and im- 
posed temperature gradient and the dis- 
sipative force provided by thermal con- 
ductivity and viscosity. Thus R ,  is analo- 
gous to T,, with R < R ,  corresponding to 
T > T,. Also, N - 1 is analogous to $,. 
One may even identify the soft mode for 
the convective instability from a stability 
analysis of the hydrodynamic equations 
(29) for a fluid layer under an imposed 
temperature gradient. The particular 
Fourier component of the velocity field 
that becomes unstable corresponds to 
the flow pattern sketched in Fig. 9. This 
velocity field eigenvector results in the 
development of spatial structure above 
R, :hat is influenced by the fluid bound- 
ary conditions. Experiments (26, 30) 
have even measured the mode softening 
on approach to R,. 
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Other instabilities (for example, laser 
thresholds) may be viewed in this way as 
well, with appropriate identification of 
the physical quantities involved. A par- 
ticularly important question which has 
received considerable theoretical atten- 
tion is the proper description and role of 
"fluctuations" in such threshold phe- 
nomena. The simplest analyses of 
threshold onsets correspond, in phase 
transition language, to the mean field ap- 
proximation. Indeed, the N(R)  slope ob- 
served near R, corresponds to /3 = 1/2. 
More sophisticated mathematical treat- 
ments (26) suggest that departures from 
mean field theory will become impor- 
tant only extremely close to threshold 
[for the Rayleigh-Benard problem 
( R  - R,)/R,  5 Hence the region 
analogous to the critical regime in phase 
transitions is expected to be experimen- 
tally inaccessible (more by virtue of 
boundary condition effects which would 
round the transition than of insufficient 
temperature control) for transitions be- 
tween one nonequilibrium steady state 
and another. 

While additional careful exueriments 
should be done on such transitions, it ap- 
pears that the most fruitful and challeng- 
ing area for study of fluctuations in non- 
equilibrium systems will center not on 
the transitions between steady states 
(such as the onset of convection) but 
rather on the transition from steady or 
time periodic to chaotic or randomly 
time-dependent behavior. The latter area 
involvCs such fundamental questions as 
the evolution of turbulence, the inter- 
actions of strong fluctuations, and the 
origins of irreversibility. Early experi- 
mental measurements (30) of the power 
spectra in the Rayleigh-Benard problem 
well above R ,  have already revealed an 
unexpected richness in the nonlinear be- 
havior leading to the evolution of turbu- 
lence. Figure 10 shows a sequence of 
such power spectra for R - 10Rc in the 
vicinity of turbulent onset. Below 
R / R ,  < 7.4 the flow is completely 
steady. Above R / R ,  = 7.4 the flow be- 
comes periodic with a single character- 
istic frequency, which appears together 
with its harmonic in Fig. 10a. Beyond 
RIR, = 9.9 a second incommensurate 
frequency appears, so that Fig. lob can 
be fully indexed as m f ,  + n f i ,  where m 
and n are integers. As R increases fur- 
ther the lowest frequency (arrow) de- 
creases and nearly reaches zero at 
R / R ,  = 10.6. At higher R the power 
spectra are broad, indicative of aperiodic 
or turbulent flow (Fig. 10d). 

This example, while dramatic, illus- 
trates but one of many different paths to 
turbulence that have been observed in 

the Rayleigh-Benard system under dif- 
ferent boundary conditions. At present 
we lack any unifying principles for even 
classifying these differences. Never- 
theless, there is reason to hope that by 
virtue of (i) increased theoretical under- 
standing of mode coupling and strong 
fluctuation phenomena and (ii) appli- 
cation of precise and sophisticated ex- 
perimental techniques, the kind of sys- 
tematic understanding of equilibrium 
transitions that emerged in the 1970's 
may emerge for nonequilibrium systems 
in the 1980's. 
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