
planation, melatonin synthesis and, 
hence, possibly the function of the pi
neal, is dramatically reduced in the aging 
Syrian hamster. 
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The light and rotation schedule began 
shortly after the end of phase 1 (14). 
Each animal was randomly assigned to 
one of four treatment conditions. Two 
groups of animals (paired/caudal and 
paired/cephalad) received 50 contiguous 
and completely overlapping pairings of 
30 seconds of light and rotation (75) on 
each of three consecutive training days. 
The time between the initiation of each 
pairing was, on the average, 2 minutes. 
Two other groups of animals (random/ 
caudal and random/cephalad) also re
ceived 50 30-second presentations of 
both light and rotation during each of 
three consecutive daily training sessions. 
For these animals, light and rotation pre
sentations were presented randomly and 
independently of one another, although 
at the same rate (average interstimulus 
interval for both light and rotation was 2 
minutes) as for paired groups. One group 
of both paired and random animals were 
secured throughout training with heads 
oriented toward the center of rotation 
(paired/caudal and random/caudal) to en
sure that the caudal hair cells would be 
those stimulated by rotation. Similarly, 
both of the remaining groups (paired/ 
cephalad and random/cephalad) were se
cured throughout training with heads ori
ented away from the center of rotation to 
ensure that the cephalic hair cells would 
be those stimulated by rotation. After 
training session 3, each animal was test
ed for both short- and long-term modifi-

Neural Organization Predicts Stimulus Specificity for a 
Retained Associative Behavioral Change 

Abstract. Paired, but not random, presentations of light and rotation produced 
long-term changes in Hermissenda'S response to light. The nature of this change 
depended on the orientation of the animals with respect to the center of rotation and 
was predicted by known organizational features of Hermissenda's nervous system. 
When rotation that excited caudal hair cells was paired with light, a significant in
crease in response latency to test lights resulted. Rotation exciting cephalic hair cells 
when paired with light decreased the response latencies compared with latencies 
produced by random presentation of light and rotation. 
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cation of latency to enter the area of test 
illumination. Immediately after the ses
sion, each animal was removed from its 
tube, the lens paper wrapping was re
moved, the animal was returned to its 
tube, and its latency to enter the center 
of the illuminated turntable was record
ed. Animals were then returned to their 
home cages for 24 hours and were tested 
again at 48, 72, 96, and 120 hours after 
the beginning of session 3 of acquisition 
training. 

No significant differences existed 
among groups for absolute baseline la
tencies. Furthermore, no significant dif
ferences were apparent among any of 
the groups when tested immediately 

after the end of acquisition training 
(unweighted means, repeated measures 
analysis of variance; P < .05) (16). All 
groups were slower to enter the test area 
(Fig. 2). When tested for retention of 
behavioral change, however, marked 
differences emerged among groups. 
Scheffe multiple comparisons (a= .05) 
indicated (17) that the paired/caudal ani
mals were slower to enter the test area of 
illumination than random/caudal animals 
48 and 72 hours after training. Paired/ 
cephalad animals were quicker to enter 
the test light than random/cephalad ani
mals 48 and 72 hours after training. 
Paired/cephalad animals were also faster 
relative to baseline at 72 hours. Neither 
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Fig. 1. Schematic diagram of interactions between Hermissenda visual and statocyst systems. 
The neural interactions (intersection of vertical and horizontal processes) identified to be repro
ducible, from preparation to preparation, are based on intracellular recordings from hundreds of 
pre- and postsynaptic neuron pairs as well as light and electron microscopic studies. (A) Caudal 
orientation. When caudal hair cells are depolarized by rotation (as they are for the caudal orien
tation) their inhibition of the E optic ganglion cell increases. Following inhibition by these hair 
cells as well as inhibition by the ipsilateral type B photoreceptor, the E cell undergoes rebound 
depolarization. During this depolarization the E cell increases its synaptic excitation of the type 
B cell. The E cell is also responsible for synaptic inhibition of the caudal hair cell. During 
rebound depolarization of the E cell, the inhibition of the caudal hair cell is also increasingly 
inhibited. The resultant of these synaptic effects is increased synaptic excitation of the type B 
cell after rotation (for caudal orientation) alone and after light alone, but particularly after light 
paired with rotation. This is so because during stimulus pairing (for the caudal orientation), the 
caudal hair cell (or cells) depolarizes both in response to rotation and because of decreased 
inhibition from the E cell, which is now inhibited both by the caudal hair cells and the type B 
photoreceptors. (B) Cephalic orientation. When cephalic hair cells are depolarized by rotation, 
the resultant synaptic effect is slight inhibition after stimulus pairing. The arrow indicates direc
tion of the centrifugal force vector produced by rotation. The darkened vertical processes with 
plus signs represent the only excitatory synaptic interactions within this network. 

Fig. 2. Mean latency ratios in
dicating changes in Hermis
senda's response latencies to 
enter an illuminated area after 
various schedules of light and 
rotation pairings. Since indi
vidual Hermissenda differ great
ly in their absolute latencies 
to enter the test area of illumi
nation, all latency scores ob
tained during testing were con
verted to relative scores by 
means of a ratio comparing 
test to baseline latencies (76). 
With this measure, values less 

9 6 120 A 4 8 

T e s t s a f te r cond i t ion ing (hours ) 

72 96 120 

than .50 indicated that test latencies are longer than in baseline, and values greater than 
.50 indicate shorter latencies. Symbols: O, paired/caudal; • , random/caudal; A, paired/ ceph
alad; and A, random/cephalad. The latency ratio is of the form AI(A + B) where A denotes 
baseline response latency and B denotes latency during test (cutoff score of 180 minutes). Group 
data consist of three independent replications for all experimental and control groups. Handling 
during restriction of orientation may have produced a nonspecific decrease in locomotor activi
ty which masked other differences in test latencies previously observed by Crow and Alkon (2, 
4) on day 3. 

of the random groups differed from one 
another at any time. 

Caudal versus cephalad hair cell stim
ulation, then, clearly produces different 
long-term behavioral changes after train
ing with paired (but not random) light 
and rotation. This difference is predicted 
by orientation-specific features of the 
Hermissenda nervous system (Fig. 1) 
and the hypothesis that (i) short-term cu
mulative depolarization of the type B cell 
(10) leads to the observed long-term de
polarization (4) for animals trained with 
paired (but not random) stimuli and (ii) 
this long-term depolarization causes, at 
least in part, the associative behavioral 
changes retained during the days after 
training. 
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Membrane Depolarization Accumulates During Acquisition of an 
Associative Behavioral Change 

Abstract. Long-lasting electrical changes of identified Hermissenda neurons, the 
type B photoreceptors, can account for concomitant associative behavioral changes, 
Depolarization of the type B cells after paired light and rotation accumulates (as 
monitored with intracellular electrodes) with repetition. This accumulation was spe
cific to stimulus pairing (versus light alone or explicitly unpaired stimuli) and to the 
orientation of the nervous system with respect to the center of rotation; it provides a 
neural step in the acquisition of associative behavioral changes for gastropod mol-
lusks and possibly other species. 

Type B photoreceptors of the nu-
dibranch mollusk Hermissenda crassi-
cornis undergo long-lasting depolariza
tion (LLD) after alight step (1) of moder
ate (^ 103 to 105 erg cm - 2 sec -1) intensity 
(Fig. 1 and Table 1). This LLD is a non-
synaptic process originating in the type 
B cell body. It arises at least in part from 
a light-induced, voltage-dependent Ca2+ 

conductance (2). The LLD and other 

nonsynaptic electrical characteristics of 
the type B cell show long-lasting changes 
(5) after exposure of intact Hermissenda 
to 3 days of light paired with rotation 
(compared with randomized and explicit
ly unpaired control tests). This paired-
stimulus regimen produced short- (4) and 
long-term (5) behavioral changes, the lat
ter having defining features of associa
tive learning (6). In this experiment, the 

same sensory stimuli that produced the 
behavioral and neural (5, 7) changes 
were presented to the isolated circum-
esophageal nervous system with intact 
eyes and statocy sts through the use of an 
apparatus for continuous intracellular 
recording (8, 9). 

When the circumesophageal nervous 
system was rotated in the caudal orienta
tion (with the statocysts' caudal poles 
oriented away from the center of rota
tion) during the light step, the LLD was 
increased in amplitude and prolonged 
(Fig. 1 and Table 1). Accumulation of 
this depolarization, measured instanta
neously at 20 and 60 seconds after the 
light step, was apparent when these 
paired sensory stimuli were repeated 90 
seconds after the first paired stimulus 
presentation. Cumulative depolarization 
after two stimulus pairs was greater than 
that after two lights alone (at 90-second 
intervals) or that after light and rotation 
in an explicitly unpaired sequence (Fig. 1 
and Table 1). The same number of ex
plicitly unpaired stimuli were presented 
over the same total time period as for the 
paired stimulus regimen. For the caudal 
orientation, with repeated stimulus pair 
presentations the cumulative depolariza
tion progressively increased (Fig. 2A) 
and persisted for many minutes after the 
stimulus pairs (Fig. 2B). Cumulative de
polarization after stimulus pairing did 
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Fig. 1 (left). Intracellular voltage recordings of Hermissenda neurons during and after light and rotation stimuli. (A) Responses of a type B 
photoreceptor to the second of two succeeding 30-second light steps (with a 90-second interval intervening). The cell's initial resting potential, 
preceding the first of the two light steps in (A), (B), and (C), is indicated by the dashed lines. Depolarization above the resting level after the 
second of the two light steps is indicated by shaded areas. (A) Light steps (~ 104 erg cm-2 sec"1) alternating with rotation (caudal orientation) 
generating ~ 1.0 g. The end of the rotation stimulus preceded each light step by 10 seconds. (B) Light steps alone. (C) Light steps paired with 
rotation. By 60 seconds after the first and second light steps, paired stimuli cause the greatest depolarization and unpaired stimuli the least. The 
minimal depolarization was in part attributable to the hyperpolarizing effect of rotation. Depolarization after the second presentation of paired 
stimuli was greater than that after the first. Fig. 2 (right). (A) Increase of type B membrane depolarization with repetition of the stimulus pairs. 
Membrane potential was measured instantaneously 20 seconds (filled circles) and 60 seconds (open squares) after successive presentations of light 
steps paired with rotation. (B) Decrease of type B membrane depolarization after repeated presentation of stimulus pairs as described in (A). 
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