
patterns indicates the generality of these 
findings. This has formed the basis for 
the development by Kronauer et al. of a 
mathematical model of the human circa-
dian timing system, using two interacting 
oscillators (76), that may correspond to 
specific anatomical structures within the 
human brain (77). The success of that 
mathematical model in reproducing the 
patterns observed (Fig. 1) supports our 
analysis of the data. These findings have 
major implications for understanding the 
timing of human sleep and may also help 
explain the sleep-wake patterns in shift 
workers and in certain clinical sleep dis­
orders (18). 
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cycle has conferred on humans an evolu­
tionary advantage (72). We examined 
this apparent difference and report that 
light of higher intensity than that used 
in previous studies unequivocally sup­
presses melatonin secretion in humans. 

Six normal subjects (four females and 
two males), who gave written informed 
consent, were each studied on two sepa­
rate occasions. Blood was sampled at in­
tervals through an indwelling catheter. 
Between 11 p.m. and midnight on each 
night of the study the subjects retired to 
a dark room to sleep; at 2 a.m. they were 
awakened and exposed to light for 2 
hours. On one night fluorescent light was 
used (Vita-Lite, — 500 lux at eye level-— 
the approximate intensity used in home 
or industrial conditions), and on another 
night incandescent light was used (150-W 
flood lamps, — 2500 lux at eye level—the 
approximate intensity of indirect sun­
light measured 1 inch from a window on 
a clear spring day). At 4 a.m. the sub­
jects resumed sleeping in the dark. The 
two male subjects were studied under 
two additional conditions: on a third 
night they were exposed to approximate­
ly 1500 lux of incandescent light between 
2 a.m. and 4 a.m., and on a fourth occa­
sion they slept in the dark throughout the 
night (13). The concentration of melato­
nin in the plasma was assayed by gas 
chromatography-negative chemical ioni-
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Light Suppresses Melatonin Secretion in Humans 
Abstract. Bright artificial light suppressed nocturnal secretion of melatonin in six 

normal human subjects. Room light of less intensity, which is sufficient to suppress 
melatonin secretion in other mammals, failed to do so in humans. In contrast to the 
results of previous experiments in which ordinary room light was used, these findings 
establish that the human response to light is qualitatively similar to that of other 
mammals. 



ization mass spectrometry method of 
Lewy and Marky (14). 

Melatonin concentrations decreased 
10 to 20 minutes after the subjects were 
exposed to 2500-lux incandescent light 
and reached near-daytime levels within 1 
hour (Fig. 1). After the subjects resumed 
sleeping in the dark, the melatonin con­
centrations increased immediately and 
within 40 minutes were at the levels mea­
sured before exposure. The fluorescent 
light (500 lux) did not reduce melatonin, 
and there was no change after the return 
to darkness. In the two subjects who 
were exposed to 1500-lux incandescent 
light, melatonin concentrations de­
creased to levels intermediate between 
those measured during exposure to 500 
and 2500 lux (Fig. 2). The return to nor­
mal nighttime concentrations after sub­
jects were exposed to 1500 lux was simi­
lar to that occurring after their exposure 
to 2500 lux. The concentration of melato­
nin in subjects awakened and exposed to 
500-lux fluorescent light did not differ 
significantly from that measured while 
they were asleep in the dark. 

These data indicate that brief exposure 
to environmental light suppresses mel­

atonin secretion in humans. Inhibition of 
secretion appears to be immediate, since 
the rate of decline in melatonin corre­
sponds to the half-life of the hormone in 
primate plasma (75). Since exposure to 
1500 lux produced an intermediate de­
crease in melatonin, there may be a di­
rect relation between the decrease in 
melatonin concentration and light in­
tensity (76). 

Humans seem to require light of con­
siderably higher intensity for melatonin 
suppression than do other mammals (77). 
For example, Vita-Lite of less than 10 
lux suppresses melatonin synthesis in 
rats 50 percent, and 500 lux is well above 
the intensity required for complete inhi­
bition (18). The human response to light 
also differs from that of other species in 
another respect. When rats are briefly 
exposed to light during the second half of 
the night, melatonin synthesis remains 
suppressed after the return to darkness 
(79). In our human subjects melatonin 
concentrations quickly returned to nor­
mal nighttime levels. Thus a higher in­
tensity of light may be required to sup­
press melatonin secretion in humans, 
and secretion may be more readily re-
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Fig. 1 (left). Effect of light on melatonin secretion. Each point represents the mean concentra­
tion of melatonin (± standard error) for six subjects. A paired Mest, comparing exposure to 500 
lux with exposure to 2500 lux, was performed for each data point. A two-way analysis of vari­
ance with repeated measures and the Newman-Keuls statistic for the comparison of means 
showed significant differences between 2:30 a.m. and 4 a.m. (*, P < .05; **, P < .01). Fig. 
2 (right). Effect of different light intensities on melatonin secretion. The averaged values for two 
subjects are shown. Symbols: (O) 500 lux; (X) 2500 lux; (•) 1500 lux; and (D) asleep in the dark. 

sumed after the onset of darkness (20). 
Earlier attempts to suppress melatonin 

secretion probably failed because the 
light was insufficiently intense (8-11,21). 
The importance of intensity may have 
been underestimated, because of reports 
of substantial melatonin secretion in hu­
mans during the day—even during ex­
posure to sunlight (77, 22, 23). Using 
mass spectral assay, however, we con­
sistently found very low concentrations 
of melatonin during the day. Moreover, 
we have found that sunlight suppresses 
melatonin in subjects whose sleep has 
been delayed (24). The high daytime lev­
els reported by previous investigators 
probably resulted from a lack of assay 
specificity. 

One example of the many other effects 
of light on mammals is the photoperiodic 
regulation of reproductive cycles (25). 
Light may have significant endocrine ef­
fects on human beings as well. For ex­
ample, and in northern Finland most 
conceptions occur during the summer 
(26) and infertility is more common in 
blind women (27). Our results are further 
evidence for an ocularly mediated effect 
of light on endocrine function in humans 
(28). 

It appears that the same neuroanatom-
ical pathways mediate melatonin secre­
tion in humans as in other mammals (29). 
The recognition that humans require 
light of much higher intensity than other 
species for suppression of melatonin se­
cretion should be helpful in future clini­
cal investigations. Humans may also re­
quire brighter light for the entrainment of 
circadian rhythms [for example, the re-
entrainment of circadian rhythms after 
air travel is retarded if the subjects are 
kept indoors (30)]. Perhaps, by distin­
guishing among different light intensities, 
humans have adapted to artificial lighting 
while remaining sensitive to the natural 
light-dark cycle. 
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Glucose Suppresses Basal Firing and Haloperidol-Induced 
Increases in the Firing Rate of Central Dopaminergic Neurons 

Abstract. In the rat, doses of glucose sufficient to raise glucose concentrations in 
the blood to levels equivalent to those produced by a meal or stress suppress the 
firing of dopamine-containing neurons located within the substantia nigra. Glucose 
also prevents or reverses the increase in discharge rates of dopaminergic cells nor­
mally elicited by the antipsychotic agent haloperidol. 

Central dopamine-mediated systems 
play an important role in maintaining 
motivated feeding behaviors especially 
in response to abrupt decreases in glu­
cose use (/). We now report that glucose 
administration suppresses the firing of 
central dopaminergic neurons within the 
zona compacta of the substantia nigra 
(SNC). These findings are perhaps re­
lated to the broad influence of these neu­
rons on motor, sensory, and cognitive 
functions (2). 

Male albino Sprague-Dawley rats (175 
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Fig. 1, Changes in the spontaneous activity of 
dopamine-containing neurons located within 
the SNC (mean ± standard error, N = 6) and 
blood glucose (N = 8) after the administra­
tion of D-glucose (15 mg/kg, intravenous). 
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to 350 g, Zivic-Miller) were housed two 
per cage and maintained on an alternat­
ing 12-hour light-dark cycle with free ac­
cess to food and water. Animals were 
anesthetized with chloral hydrate (400 
mg per kilogram of body weight) and 
mounted in a stereotaxic apparatus. A 
recording micropipette filled with 2M 
NaCl saturated with Fast Green dye (in 
vitro impedance, 2 to 10 megohms) was 
lowered into the region of the SNC [ante­
rior, 1300 to 2400 /xm; lateral, 1300 to 
2400 fim (5)], and single unit activity was 
recorded (4). Dopaminergic neurons 
were located on the basis of previously 
described electrophysiological criteria 
(5). Briefly, these neurons have sponta­
neous firing rates of 1 to 9 Hz, often dis­
play a train of action potentials or 
"burs ts" upon discharge, have biphasic 
waveforms (positive or negative) with 
amplitudes of 0.4 to 1.5 mV, and dura­
tions as long as 4 msec. All control cells 
(dopaminergic neurons tested with hy­
pertonic saline, L-glucose, or D-fructose) 
also met the pharmacological criteria for 
mesencephalic dopaminergic cells (5). 
That is, their firing rates were slowed by 
the administration of a dopamine agonist 
(amphetamine) and increased by a dopa-
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