
Electromyograms Are Repeatable: Precautions and Limitations 

Abstract. Electromyograms recorded by bipolar, fine wire electrodes placed into 
anatomically equivalent sites in skeletal muscles of vertebrates are repeatable when 
the animals use the muscles in a similar way. Repeatability applies to the number of 
spikes recorded from a given site and to their average amplitude as well as to the 
root-mean-square value, though the values obtained for these descriptors differ 
among muscles, and perhaps fascicles, of particular animals even when the animals 
are performing equivalent actions. Tests suggest that these results are not affected 
by the nature of most kinds of recording equipment. Also, substantial differences in 
electrode tip configuration and wire diameter induce relatively minor, less than 8 
percent, differences in electrode resistance and impedance. Doubling the length of 
the fine wire leads produces less than an 8 percent (15 percent when the length is 
tripled) effect; however, the effect of electrode material may be as much as 85 percent 
in resistance and 20 percent in impedance. Reports of nonreproducibility or vari­
ability of electromyograms apparently result mainly from anatomically inexact 
placement into physiologically and histochemically different fascicles of compound 
muscles, from recordings of muscles that are active at very low levels, and per­
haps from comparison among recordings of muscles that really differ in their ac­
tivity level. 

Electromyograms (EMG's) are extra­
cellular recordings of voltage changes 
taken from within or from the surface of 
muscles of active animals. Since the in­
troduction of bipolar, fine wire elec­
trodes (1), EMG's have been widely 
used to study the functional morphology 
and physiology of freely moving verte­
brates. Because the literature continues 
to state that the signals are not repeat-
able and that electrodes placed in adja­
cent sites of a muscle of a particular ani­
mal give markedly different results, 
many studies compare only the onset 
and cutoff of EMG signals. For quan­
titative comparisons, investigators ana­
lyze the changes in the output of a single 
array of electrodes (muscles) while the 
animal is performing a sequence of dif­
ferent functions. 

Observations have suggested that 
EMG's are actually repeatable; we test­
ed this using digitized rather than analog 

records of the major descriptors of the 
EMG (2). A series of experiments, in 
which electrodes were placed in well-de­
fined areas, now suggest that the EMG 
recordings are indeed repeatable. For in­
stance, three electrodes were placed into 
a small area (2 by 2 cm) of the deep tem­
poralis muscle on each side of each of 
four cats that were then fed standard 
food (3). None of the means for se­
quences of 15 consecutive chewing 
movements (that is, bites) obtained with 
any one electrode was significantly dif­
ferent from those obtained for any other 
one of the set of 24 (Table 1). The EMG's 
clearly predicted on which side of the 
cat's mouth the food was being chewed, 
and these predictions were confirmed 
from synchronized film records; the 
EMG's on the working side agreed with 
each other and differed significantly from 
those on the balancing side. In contrast, 
the EMG's differed markedly from bite 

to bite within any sequence. Tests do 
show significant differences among the 
EMG's recorded from the several masti­
catory muscles (4), perhaps correlating 
to histological aspects at the site (5). 

Clearly, EMG's recorded from partic­
ular sites in diverse muscles of multiple 
animals produce repeatable results. 
Does the "variability" noted in other 
studies reflect variability of the recording 
equipment and the nature of the elec­
trodes or does it reflect the events being 
sampled? 

The action potential of a single motor 
unit, that is, the physical event that must 
be detected and recorded, proceeds 
within approximately 0.3 to 1.0 msec (6). 
Commonly used high-input impedance 
differential preamplifiers (we tested the 
Tektronix 122 and 26A2, with input im­
pedance increased to 100 megohms, and 
the Grass P-15), adequately separate 
such events without significant ampli­
tude attenuation until spike duration be­
comes less than 0.05 msec. Such signals 
can be photographed off of the screen of 
an ordinary oscilloscope. Substantial fu­
sion of EMG signals and a decrease in 
spike number and spike amplitude oc­
curs for many chart recorders, but even 
poor recorders would adequately repre­
sent the onset and cutoff of trains of sig­
nals. 

To determine the effect of electrode 
characteristics, we made multiple, bipo­
lar, fine wire electrodes to identical con­
figurations (7) from each of several types 
of wire. We then tested the resistance 
across each electrode pair (free end to 
free end), while the tips were placed into 
lactated Ringer solution (NDC 0074-
7953, Abbott). Next we determined the 
effect of electrode impedance within the 
standard recording arrangement by plac-

Table 1. Muscular activities of the deep temporales of both sides when four different cats chew standard-sized pieces of cooked beef. Each value 
gives the output from one electrode placement for 15 bites. In all cases the mean number of spikes and mean spike amplitude (peak to peak in 
millivolts) per bite are given ± the standard error. 

Cat 

1 

2 

3 

4 

Elec­
trode 

A 
B 
C 
A 
B 
C 
A 
B 
C 
A 
B* 
C 

Right 

Working 

Number 

34.1 ± 1.5 
31.5 ± 1.7 
34.3 ± 1.4 
32.4 ± 3.7 
34.6 ± 1.8 
30.5 ± 2.7 
35.1 ± 3.1 
32.8 ± 3.2 
32.5 ± 1.4 
31.4 ± 2.3 
32.6 ± 1.9 
33.3 ± 2.1 

Amplitude 

2.21 ± 0.25 
2.07 ± 0.16 
2.17 ± 0.26 
2.71 ± 0.21 
2.27 ± 0.17 
2.20 ± 0.15 
1.94 ± 0.20 
2.18 ± 0.19 
2.22 ± 0.23 
2.01 ± 0.19 
2.14 ± 0.20 
2.03 ± 0.26 

Balancing 

Number 

26.2 ± 1.6 
22.6 ± 1.7 
22.1 ± 1.3 
21.0 ± 2.2 
22.8 ± 1.9 
23.3 ± 1.9 
24.8 ± 1.3 
20.3 ± 2.3 
23.5 ± 1.5 
25.1 ± 1.5 
22.2 ± 1.9 
21.0 ± 1.2 

Amplitude 

1.78 ± 0.17 
1.74 ± 0.12 
1.82 ± 0.13 
1.85 ± 0.17 
1.82 ± 0.11 
1.80 ± 0.12 
1.68 ± 0.12 
1.81 ± 0.17 
1.72 ± 0.22 
1.69 ± 0.14 
1.76 ± 0.10 
1.67 ± 0.12 

Left 

Working 

Number 

30.9 ± 3.1 
29.5 ± 1.8 

33.1 ± 2.1 
31.6 ± 2.5 
33.0 ± 2.5 
31.9 ± 2.9 
35.7 ± 2.8 
34.2 ± 1.8 
34.8 ± 2.1 

38.8 ± 1.9 

Amplitude 

2.15 ± 0.21 
2.18 ± 0.22 

2.17 ± 0.16 
2.10 ± 0.10 
1.98 ± 0.12 
2.06 ± 0.23 
2.12 ± 0 . 2 6 
2.24 ± 0.19 
1.88 ± 0.14 

1.93 ± 0.17 

Balancing 

Number 

24.9 ± 2.2 
23.4 ± 1.9 

23.2 ± 2.5 
22.1 ± 2.3 
22.9 ± 2.1 
22.8 ± 1.4 
20.8 ± 2.1 
22.6 ± 1.7 
24.5 ± 2.1 

21.9 ± 1.5 

Amplitude 

1.77 ± 0.15 
1.71 ± 0.10 

1.79 ± 0.17 
1.68 ± 0.09 
1.65 ± 0.10 
1.61 ± 0.11 
1.66 ± 0.17 
1.76 ± 0.11 
1.67 ± 0.16 

1.65 ± 0.14 

*This electrode broke on this cat. 
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Table 2. Change in resistance (R) and impedance (I) of bipolar electrodes formed from different metals and different total lengths and tip lengths 
(+, an increase; —, a decrease). 

Electrode 

Copper^ (0.05 mm, solid; 
Pope, Venlo Holland) 

Silver§ (0.076 mm, solid; 
Medwire) 

Silver chloride§ (0.076 mm, solid; 
Medwire) 

"Karma" stainless steel|| (0.02 mm, solid; 
Driver-Harris) 

Stainless steel§ (0.076 mm, solid; 
Medwire) 

Stainless steelH (0.05 mm, solid; 
California Fine Wire) 

Stainless steel|| (0.076 mm, stranded; 
Cooner) 

Metal 

R 

+ 12 

+ 15 

+33 

+71 

+78 

+85 

+80 

* 

I 

+4 

+7 

+4 

+8 

+ 12 

+ 18 

+20 

Length of electrodef 

Increase 
(50%) 

R 

+5 

+8 

+6 

+4 

+7 

+4 

+6 

I 

+4 

+5 

+5 

+5 

+5 

+6 

+6 

Decrease 
(50%) 

R 

- 4 

- 8 

- 7 

- 4 

- 8 

- 5 

- 6 

I 

- 5 

- 3 

- 4 

- 3 

- 5 

- 5 

- 6 

Length of tipt 

Increase 
(50%) 

R 

- 6 

- 4 

- 4 

- 3 

- 3 

- 4 

- 3 

I 

- 5 

- 3 

- 4 

- 5 

- 5 

- 3 

- 6 

Decrease 
(50%) 

R 

+5 

+6 

+3 

+6 

+2 

+3 

+3 

I 

+5 

+5 

+8 

+7 

+7 

+4 

+7 

* Percent change in reference to a platinum-iridium electrode, 15 cm long, 2-mm bared tip. tPercent change in reference to electrode of the same metal, 30 cm long, 
2-mm bared tip. ^Enamel coated. §Teflon coated. ||Polyurethane coated. UH-ML coated. 

ing groups of different electrodes, se­
lected from the set, into a conductive gel 
(agar with distilled water) and by com­
paring their responses to various signals 
(8). The rapid events make a change of 
electrode impedance or recorded spike 
height (peak voltage) the critical factor. 
The variants evaluated were the length 
of electrode wire, the length of the bared 
tips, and the diameter of the wire. The 
most marked effect was that due to the 
nature of the metal of the electrode (7, 9) 
(Table 2). 

Among all metals tested, the maxi­
mum change, relative to platinum-irid­
ium, was an increase of 85 percent in re­
sistance, but only 20 percent in imped­
ance, both shown by stainless steel. 
Also, our copper electrodes were the on­
ly ones that showed a marked thermo­
electric effect from the alternating cur­
rent at the solder junctions (10). This 
raises further questions about the prob­
lems associated with the use of toxic 
metals such as silver and copper in long-
term applications (11). However, inter-
electrode differences are relatively in­
significant when EMG's are first passed 
to high-impedance differential pre­
amplifiers. 

With respect to the events being sam­
pled, variability could be (i) spatial, in 
which case adjacent electrodes would 
perceive distinctly different signals, or 
(ii) temporal, in which case the signals at 
an electrode would differ during succes­
sive contractions. Spatial variability is 
clearly a source of error. Many muscles 
show regional differences in the distribu­
tion of fiber types; the fibers of some mo­
tor units are clumped, others are distrib­
uted. This is particularly true in multi-

pinnate muscles and those subdivided by 
internal tendons; in these muscles, por­
tions may differ in activity during one be­
havioral sequence or among behaviors 
(12). Consequently, electrodes must be 
placed into identical heads of muscles or 
identical fiber layers of complex muscles 
in order to sample equivalent biological 
events. Commonly used bipolar elec­
trodes sample events that occur in mul­
tiple adjacent muscle fibers. If the 
muscle, or a subsection of it, is very 
small, has relatively few motor units, 
and is active at a low level, adjacent elec­
trodes may produce different signals 
(13); however, as the activity level rises, 
adjacent electrodes acquire more similar 
signals. Another potential source of vari­
ability may be the movement of freshly 
inserted electrodes as the muscle acts. In 
short, EMG signals should be repeatable 
only if they reflect equivalent events. If 
the electrode records muscular activity 
during a series of bites that differ, due to 
the changing nature and size of the food, 
the "nonrepeatability" documents only 
that the recording system is functioning 
properly. 

Perhaps, the argument for non-
repeatability derives from our inability 
simply to correlate EMG's with the 
forces produced by a muscle. Elec­
tromyography will not yet differentiate 
among the contributions of different 
types of fibers, nor indicate whether con­
traction is isometric or whether the mus­
cles are shortening or lengthening during 
the active period. As such factors obvi­
ously affect the force generated, they 
must be taken into account in analysis 
(14). 

Our results should leave no question 

that EMG's, obtained from reasonably 
standardized fine wire electrodes and 
standardized recording equipment and 
placed into well-defined sites in major 
subdivisions of muscles, do yield repeat-
able observations and do permit predic­
tions for equivalent events on the same 
muscle in other specimens. Not all parts 
of any muscle will be equivalently ac­
tive, nor can we, in the absence of other 
data, readily predict the force generated 
by a muscle from the localized EMG. We 
can often predict the force from EMG's 
of portions of muscles that are con­
strained to particular displacement pat­
terns by joints of limited degrees of free­
dom. However, the remaining levels of 
uncertainty among EMG's reflect unre­
solved biological phenomena rather than 
random results of the recording proce­
dure. 
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typewriter and the video telephone. 
Teletypewriters (4) enable a sender to 
transmit a typewriter message to a re­
ceiver, who sees the characters dis­
played on a screen or produced on an­
other teletypewriter. The teletypewriter 
is useful for communication between 
deaf and hearing people, perhaps in con­
junction with a voice channel for those 
deaf who retain intelligible speech. But 
the teletypewriter has a practical dis­
advantage: communication is slow and 
effortful compared with voice or ASL 
communication, which is about as fast as 
voice (5). The video telephone is far 
more attractive than the teletypewriter 
to many deaf persons for communication 
among themselves (6). 

The American video telephone [Pic-
turephone (7)] and the British version 
[Viewphone (8)] both transmit a picture 

Bandwidth Requirements for Video Transmission of 

American Sign Language and Finger Spelling 
Abstract. Although current video communication schemes use a bandwidth on the 

order of 1 megahertz, the bandwidth required for video communication of American 
Sign Language by a simple raster scan is only approximately 20 kilohertz. 
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