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Hermissenda will normally move to- 
ward a light source in an otherwise un- 
illuminated environment (1). This move- 
ment can be modified by pairing discrete 
presentations of light with rotation of the 
organism (1). Paired (but not unpaired or 
randomly paired) presentations result in 
significantly longer latencies for the ani- 
mals to enter illuminated areas when 
tested immediately and several days af- 
ter training (2). This long-term associa- 
tive behavioral change is due, at least in 
part, to primary conductance changes 
within the somata of type B photorecep- 
tors (3-5). The neural organization (6-8) 
of Hermissenda (Fig. 1) and stimulus- 
specific cumulative depolarization of the 
type B cells (9, 10) predict, and this re- 
port confirms, that these associative be- 
havioral changes will depend on the in- 
tact animal's orientation with respect to 
the center of rotation. 

Hermissenda (N = 70) were main- 
tained individually in 15?C seawater (11). 
Each animal was fed daily until satiated 
on mussel gonad (Mytilus edulis) and 
exposed to 6 (N = 35) or 12 (N = 35) 
hours of light daily. Training and testing 
of animals began after at least 3 days of 
these maintenance conditions. Training 
consisted of three phases: (i) baseline as- 
sessment of behavior in response to 
light; (ii) light and rotation regimens; and 
(iii) multiple reassessments of responses 
to light. Training and testing techniques 
have been described (2, 12, 13). 
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The light and rotation schedule began 
shortly after the end of phase 1 (14). 
Each animal was randomly assigned to 
one of four treatment conditions. Two 
groups of animals (paired/caudal and 
paired/cephalad) received 50 contiguous 
and completely overlapping pairings of 
30 seconds of light and rotation (15) on 
each of three consecutive training days. 
The time between the initiation of each 
pairing was, on the average, 2 minutes. 
Two other groups of animals (random/ 
caudal and random/cephalad) also re- 
ceived 50 30-second presentations of 
both light and rotation during each of 
three consecutive daily training sessions. 
For these animals, light and rotation pre- 
sentations were presented randomly and 
independently of one another, although 
at the same rate (average interstimulus 
interval for both light and rotation was 2 
minutes) as for paired groups. One group 
of both paired and random animals were 
secured throughout training with heads 
oriented toward the center of rotation 
(paired/caudal and random/caudal) to en- 
sure that the caudal hair cells would be 
those stimulated by rotation. Similarly, 
both of the remaining groups (paired/ 
cephalad and random/cephalad) were se- 
cured throughout training with heads ori- 
ented away from the center of rotation to 
ensure that the cephalic hair cells would 
be those stimulated by rotation. After 
training session 3, each animal was test- 
ed for both short- and long-term modifi- 
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when paired with light decreased the response latencies compared with latencies 
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after the end of acquisition training of the random groups differed from one 
(unweighted means, repeated measures 
analysis of variance; P < .05) (16). All 
groups were slower to enter the test area 
(Fig. 2). When tested for retention of 
behavioral change, however, marked 
differences emerged among groups. 
Scheff6 multiple comparisons (a= .05) 
indicated (17) that the paired/caudal ani- 
mals were slower to enter the test area of 
illumination than random/caudal animals 
48 and 72 hours after training. Paired/ 
cephalad animals were quicker to enter 
the test light than random/cephalad ani- 
mals 48 and 72 hours after training. 
Paired/cephalad animals were also faster 
relative to baseline at 72 hours. Neither 
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Fig. 1. Schematic diagram of interactions between Hermissenda visual and statocyst systems. 
The neural interactions (intersection of vertical and horizontal processes) identified to be repro- 
ducible, from preparation to preparation, are based on intracellular recordings from hundreds of 
pre- and postsynaptic neuron pairs as well as light and electron microscopic studies. (A) Caudal 
orientation. When caudal hair cells are depolarized by rotation (as they are for the caudal orien- 
tation) their inhibition of the E optic ganglion cell increases. Following inhibition by these hair 
cells as well as inhibition by the ipsilateral type B photoreceptor, the E cell undergoes rebound 
depolarization. During this depolarization the E cell increases its synaptic excitation of the type 
B cell. The E cell is also responsible for synaptic inhibition of the caudal hair cell. During 
rebound depolarization of the E cell, the inhibition of the caudal hair cell is also increasingly 
inhibited. The resultant of these synaptic effects is increased synaptic excitation of the type B 
cell after rotation (for caudal orientation) alone and after light alone, but particularly after light 
paired with rotation. This is so because during stimulus pairing (for the caudal orientation), the 
caudal hair cell (or cells) depolarizes both in response to rotation and because of decreased 
inhibition from the E cell, which is now inhibited both by the caudal hair cells and the type B 
photoreceptors. (B) Cephalic orientation. When cephalic hair cells are depolarized by rotation, 
the resultant synaptic effect is slight inhibition after stimulus pairing. The arrow indicates direc- 
tion of the centrifugal force vector produced by rotation. The darkened vertical processes with 
plus signs represent the only excitatory synaptic interactions within this network. 

Fig. 2. Mean latency ratios in- .6 -A B 
dicating changes in Hermis- 
senda's response latencies to -5 / 
enter an illuminated area after .o2 
various schedules of light and X .4 -" 
rotation pairings. Since indi- /g 
vidual Hermissenda differ great- 3 - 

ly in their absolute latencies A ̂ 
to enter the test area of illumi- S 2 - 
nation, all latency scores ob- 
tained during testing were con- 1 - 
verted to relative scores by 
means of a ratio comparing 48 72 96 10 48 72 96 120 
test to baseline latencies (16). 

With this measure, values less Tests after conditioning (hours) With this measure, values less 
than .50 indicated that test latencies are longer than in baseline, and values greater than 
.50 indicate shorter latencies. Symbols: 0, paired/caudal; *, random/caudal; A, paired/ ceph- 
alad; and A, random/cephalad. The latency ratio is of the form AI(A + B) where A denotes 
baseline response latency and B denotes latency during test (cutoff score of 180 minutes). Group 
data consist of three independent replications for all experimental and control groups. Handling 
during restriction of orientation may have produced a nonspecific decrease in locomotor activi- 
ty which masked other differences in test latencies previously observed by Crow and Alkon (2, 
4) on day 3. 
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another at any time. 
Caudal versus cephalad hair cell stim- 

ulation, then, clearly produces different 
long-term behavioral changes after train- 
ing with paired (but not random) light 
and rotation. This difference is predicted 
by orientation-specific features of the 
Hermissenda nervous system (Fig. 1) 
and the hypothesis that (i) short-term cu- 
mulative depolarization of the type B cell 
(10) leads to the observed long-term de- 
polarization (4) for animals trained with 
paired (but not random) stimuli and (ii) 
this long-term depolarization causes, at 
least in part, the associative behavioral 
changes retained during the days after 
training. 
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missenda were provided by M. Morris of the 
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12. Light intensity was 4.6 x 103 erg cm-2 sec-', as 
measured by a radiometer (Yellow Springs In- 
ternational, 65A) at the level of the tubes (39 cm 
normal to the lamp). Additional measurements 
were also made with a narrow-band-pass filter 
(centered at 400 nm-the wavelength of peak 
sensitivity for Hermissenda's A and B photore- 
ceptors)-in front of the light source. Intensity 
was attenuated by a factor of 4.3. 

13. Four of the original 80 animals failed to traverse 
the tube during baseline tests and were dis- 
carded. 

14. This period of time was variable (range 20 to 50 
minutes) since each animal was removed by 
hand and secured for replacement into its tube in 
a fixed orientation. Each tube was also cleaned 
and filled with fresh seawater. 

15. All animals were snugly wrapped in small pieces 
of wet translucent lens paper and replaced in 
the tubes. This method successfully maintained 
animals in the desired orientation; observations 
before and after each acquisition session re- 
vealed no deviations from assigned orientation 
for any animal. Six animals had either died, or 
appeared noticeably sick, at the end of acquisi- 
tion training and were excluded from further 
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cation of latency to enter the area of test 
illumination. Immediately after the ses- 
sion, each animal was removed from its 
tube, the lens paper wrapping was re- 
moved, the animal was returned to its 
tube, and its latency to enter the center 
of the illuminated turntable was record- 
ed. Animals were then returned to their 
home cages for 24 hours and were tested 
again at 48, 72, 96, and 120 hours after 
the beginning of session 3 of acquisition 
training. 

No significant differences existed 
among groups for absolute baseline la- 
tencies. Furthermore, no significant dif- 
ferences were apparent among any of 
the groups when tested immediately 
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Membrane Depolarization Accumulates During Acquisition of an 

Associative Behavioral Change 

Abstract. Long-lasting electrical changes of identified Hermissenda neurons, the 
type B photoreceptors, can account for concomitant associative behavioral changes. 
Depolarization of the type B cells after paired light and rotation accumulates (as 
monitored with intracellular electrodes) with repetition. This accumulation was spe- 
cific to stimulus pairing (versus light alone or explicitly unpaired stimuli) and to the 
orientation of the nervous system with respect to the center of rotation; it provides a 
neural step in the acquisition of associative behavioral changes for gastropod mol- 
lusks and possibly other species. 
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Type B photoreceptors of the nu- 
dibranch mollusk Hermissenda crassi- 
cornis undergo long-lasting depolariza- 
tion (LLD) after a light step (1) of moder- 
ate (> 103 to 105 erg cm-2 sec-') intensity 
(Fig. 1 and Table 1). This LLD is a non- 
synaptic process originating in the type 
B cell body. It arises at least in part from 
a light-induced, voltage-dependent Ca2+ 
conductance (2). The LLD and other 
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nonsynaptic electrical characteristics of 
the type B cell show long-lasting changes 
(3) after exposure of intact Hermissenda 
to 3 days of light paired with rotation 
(compared with randomized and explicit- 
ly unpaired control tests). This paired- 
stimulus regimen produced short- (4) and 
long-term (5) behavioral changes, the lat- 
ter having defining features of associa- 
tive learning (6). In this experiment, the 
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same sensory stimuli that produced the 
behavioral and neural (5, 7) changes 
were presented to the isolated circum- 
esophageal nervous system with intact 
eyes and statocysts through the use of an 
apparatus for continuous intracellular 
recording (8, 9). 

When the circumesophageal nervous 
system was rotated in the caudal orienta- 
tion (with the statocysts' caudal poles 
oriented away from the center of rota- 
tion) during the light step, the LLD was 
increased in amplitude and prolonged 
(Fig. 1 and Table 1). Accumulation of 
this depolarization, measured instanta- 
neously at 20 and 60 seconds. after the 
light step, was apparent when these 
paired sensory stimuli were repeated 90 
seconds after the first paired stimulus 
presentation. Cumulative depolarization 
after two stimulus pairs was greater than 
that after two lights alone (at 90-second 
intervals) or that after light and rotation 
in an explicitly unpaired sequence (Fig. 1 
and Table 1). The same number of ex- 
plicitly unpaired stimuli were presented 
over the same total time period as for the 
paired stimulus regimen. For the caudal 
orientation, with repeated stimulus pair 
presentations the cumulative depolariza- 
tion progressively increased (Fig. 2A) 
and persisted for many minutes after the 
stimulus pairs (Fig. 2B). Cumulative de- 
polarization after stimulus pairing did 
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Fig. 1 (left). Intracelluiar voltage recordings of Hermissenda neurons during and after light and rotation stimuli. (A) Responses of a type B 
photoreceptor to the second of two succeeding 30-second light steps (with a 90-second interval intervening). The cell's initial resting potential, 
preceding the first of the two light steps in (A), (B), and (C), is indicated by the dashed lines. Depolarization above the resting level after the 
second of the two light steps is indicated by shaded areas. (A) Light steps (- 104 erg cm-2 sec-') alternating with rotation (caudal orientation) 
generating - 1.0 g. The end of the rotation stimulus preceded each light step by 10 seconds. (B) Light steps alone. (C) Light steps paired with 
rotation. By 60 seconds after the first and second light steps, paired stimuli cause the greatest depolarization and unpaired stimuli the least. The 
minimal depolarization was in part attributable to the hyperpolarizing effect of rotation. Depolarization after the second presentation of paired 
stimuli was greater than that after the first. Fig. 2 (right). (A) Increase of type B membrane depolarization with repetition of the stimulus pairs. 
Membrane potential was measured instantaneously 20 seconds (filled circles) and 60 seconds (open squares) after successive presentations of light 
steps paired with rotation. (B) Decrease of type B membrane depolarization after repeated presentation of stimulus pairs as described in (A). 
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