
cose on central dopaminergic transmis- 
sion are physiologically relevant. The 
lower dose of glucose (15 mg/kg, intra- 
venous) elevated blood glucose concen- 
trations by only 30 to 40 mg per 100 ml of 
blood. Food consumption or the mobili- 
zation of liver glycogen during stress can 
produce similar elevations (16). More- 
over, the length of time dopaminergic ac- 
tivity is suppressed after a 15-mg/kg dose 
of glucose appears to coincide with the 
period of elevated blood glucose concen- 
trations. Thus, daily physiological fluc- 
tuations in glucose availability may sig- 
nificantly influence dopamine-mediated 
activity in the brain. 
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Fasting Associated with Decrease in Hypothalamic /-Endorphin 

Abstract. In rats that were fasted for 2 to 3 days there was a decline in hypotha- 
lamic, but not pituitary, fi-endorphin. There was no change in pituitary or hypotha- 
lamic adrenocorticotropin content as a result offasting. Endogenous opiates may be 
involved in physiological adaptation to fasting. 
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lamic, but not pituitary, fi-endorphin. There was no change in pituitary or hypotha- 
lamic adrenocorticotropin content as a result offasting. Endogenous opiates may be 
involved in physiological adaptation to fasting. 

Organisms conserve energy during 
fasting in part by lowering the serum 
concentration of 3,5,3'-triiodothyronine 
(T3) and concomitantly increasing the 
concentration of 3,3',5'-triiodothyronine 
(reverse Ts) (1, 2), the latter having little 
or no calorigenic activity. In anticipation 
of famine, hibernating animals accumu- 
late extra calories either by increasing 
food intake and thus adipose tissue 
stores or by hoarding food in their nest 
(3). Hibernation and fasting both result 
in a state of anorexia (3), which may be 
an adaptation to prevent food-seeking 
energy expenditure until a time when 
food is plentiful. 

,/-Endorphin, an endogenous opiate 
found primarily in the central nervous 
system and anterior pituitary (4), stimu- 
lates food intake when administered in- 
traventricularly (5). Concentrations of/3- 
endorphin are increased in pituitaries 
from genetically obese mice and rats (6, 
7). Naloxone, an opiate antagonist, sup- 
presses spontaneous food intake and 
weight gain when administered subcuta- 
neously to normal rats (8), normalizes 
food intake in genetically obese rodents 
(9), and awakens hibernating animals 
(10). In the present study our purpose 
was to determine whether fasting affects 
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the concentration of /-endorphin in the 
anterior pituitary or hypothalamus, areas 
that are rich in this opiate and that have 
been linked with the regulation of feed- 
ing behavior. 

Male Sprague-Dawley rats (225 to 250 
g) were housed at 22?C with a 12-hour 
dark-light cycle in individual cages for 1 
week, during which time they received 
daily handling and free access to food 
and water. They were then divided into 
four groups, and food was withheld from 
three of the four groups for 1, 2, or 3 
days. 

On the morning of study, the animals 
were decapitated, and the hypothalamus 
and pituitary were rapidly removed. The 
posterior pituitary was gently removed 
from the remaining pituitary with an oph- 
thalmic forceps and discarded. The tis- 
sues were then homogenized in buffer 
(0.05M P04, 0.15M NaCl,pH 7.4, with 1 
mM N-ethylmaleimide, a potent pepti- 
dase inhibitor) at 4?C (4, 5, 11) with a 
Brinkmann polytron at-setting 6 for 10 
seconds. /3-Endorphin was measured by 
radioimmunoassay based on the method 
of Guillemin et al. (12) with an antibody 
that has an approximate 10 percent 
cross-reactivity with human 3-lipopro- 
tein but no cross-reactivity with adreno- 
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Table 1. Effect of fasting on central nervous system /-endorphin. Values represent means ? 
standard deviation. Nonsignificant = P > .05; P values represent comparisons of fasted ani- 
mals to nonfasted controls (unpaired t-test). N.S., not significant, 

/3-Endorphin (nanograms per milligram of protein) 

Animal N Hypothalamic Pituitary 

Concentration P Concentration P 

Control 20 3.45 + 1.7 1,510 + 998 
Fasted 1 day 12 3.40 + 0.4 N.S. 1,151 + 518 N.S. 
Fasted 2 days 7 1.69 + 0.8 < .02 1,231 + 592 N.S. 
Fasted 3 days 12 1.22 ? 0.3 < .01 1,171 + 542 N.S. 
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Table 2. Effect of fasting on central nervous system ACTH. Values represent mean - standard 
deviation. Nonsignificant = P > .05; P values represent comparisons of fasted animals to non- 
fasted controls (unpaired t-test). N.S., not significant. 

ACTH 

Hypothalamic Pituitary 
Animals N Concentration Concentration 

(picograms per P (nanograms per P 
milligram milligram 
of protein) of protein) 

Control 20 1,769 ? 1,154 1,494 ? 934 
Fasted 1 day 12 1,874 + 1,314 N.S. 1,042 + 299 N.S. 
Fasted 2 days 7 2,142 + 353 N.S. 1,318 + 351 N.S. 
Fasted 3 days 12 875 ? 474 N.S. 930 ? 264 N.S. 

corticotropin (ACTH), melanotropin 
(MSH), or enkephalins. '25I-Labeled hu- 
man /-endorphin, antibody, and stan- 
dards or unknowns were incubated for 
24 hours, then separated with 2 percent 
charcoal coated with 1 percent bovine 
serum albumin in assay buffer. All sam- 
ples from each experiment were assayed 
in triplicate in a single assay. The intra- 
assay coefficient of variation was 3 per- 
cent, and the minimum sensitivity was 
9.2 fmole per tube. All data are ex- 
pressed as milligrams of protein per ho- 
mogenate as determined by the method 
of Lowry (13). We performed all experi- 
ments two or more times and obtained 
close agreement in the results. We there- 
fore pooled the data and analyzed them 
using one-way analysis of variance and 
Student's t-test for unpaired data. Val- 
ues from fasting animals were compared 
to nonfasted controls. 

The fasted rats remained active and 
were indistinguishable from control ani- 
mals by external appearance and behav- 
ior. Rats fasted for 1 day had a mean 
weight loss of 6 percent; for 2 days, 24 
percent; and for 3 days, 41 percent. 
Mean values for blood glucose decreased 
to 66 percent of control (P < .001) after 
1 day of fasting and was 74 percent of 
control (P < .01) after 3 days of fasting. 
There was no change in pituitary /3- 
endorphin throughout the fast; however, 
,/-endorphin in the hypothalamus be- 
came significantly reduced after 2 and 3 

days (P < .02 and P < .01, respectively) 
of fasting (Table 1). 

Immunoreactive ACTH was measured 
in the brain tissues studied by methods 
previously reported (14) (Table 2), with 
ACTH (a1-24) being used as standard. 
Calculations were based, however, on 
ACTH (1-39), which has a molecular 
weight of 4500. Processing of the 31,000 
dalton precursor to ,-endorphin and 
ACTH into smaller peptides may or may 
not occur concomitantly (15). A con- 
comitant processing of these peptides 
would result in both /3-endorphin and 
ACTH being changed in a similar direc- 
tion and magnitude. There was no 
change in immunoreactive ACTH in the 
pituitary in response to fasting, and, un- 
like the results with /-endorphin, there 
was no significant reduction in hypotha- 
lamic ACTH as a result of fasting up to 3 
days. Thus, fasting may alter the syn- 
thesis, intracellular processing, or secre- 
tion of the common precursor to ACTH 
and 83-endorphin. 

Our data indicate that hypothalamic f3- 
endorphin is modified by acute star- 
vation. The hypothalamus appears to be 
involved in feeding behavior since elec- 
trolytic lesioning in this area results in ei- 
ther obesity or anorexia, depending on 
the location of the lesion (16, 17). The 
mechanism whereby acute starvation ac- 
complishes a reduction in hypothalamic 
,/-endorphin is unknown. This reduction 
is probably due to a change in the hor- 

monal or metabolic milieu imposed by 
fasting. Anorexia due to starvation has 
been thought by many to be in part sec- 
ondary to ketosis, but the effect of ke- 
tone bodies on central nervous system 3- 
endorphin is still unknown. The decrease 
in 3-endorphin in the hypothalamus dur- 
ing a short fast may serve as a mecha- 
nism for the down-regulation of feeding 
behavior, enhancing energy conserva- 
tion during periods of food shortage. 
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