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Glucose Suppresses Basal Firing and Haloperidol-Induced 
Increases in the Firing Rate of Central Dopaminergic Neurons 

Abstract. In the rat, doses of glucose sufficient to raise glucose concentrations in 
the blood to levels equivalent to those produced by a meal or stress suppress the 
firing of dopamine-containing neurons located within the substantia nigra. Glucose 
also prevents or reverses the increase in discharge rates of dopaminergic cells nor- 
mally elicited by the antipsychotic agent haloperidol. 
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Central dopamine-mediated systems 
play an important role in maintaining 
motivated feeding behaviors especially 
in response to abrupt decreases in glu- 
cose use (1). We now report that glucose 
administration suppresses the firing of 
central dopaminergic neurons within the 
zona compacta of the substantia nigra 
(SNC). These findings are perhaps re- 
lated to the broad influence of these neu- 
rons on motor, sensory, and cognitive 
functions (2). 

Male albino Sprague-Dawley rats (175 
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Fig. 1. Changes in the spontaneous activity of 
dopamine-containing neurons located within 
the SNC (mean ? standard error, N = 6) and 
blood glucose (N = 8) after the administra- 
tion of D-glucose (15 mg/kg, intravenous). 
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to 350 g, Zivic-Miller) were housed two 
per cage and maintained on an alternat- 
ing 12-hour light-dark cycle with free ac- 
cess to food and water. Animals were 
anesthetized with chloral hydrate (400 
mg per kilogram of body weight) and 
mounted in a stereotaxic apparatus. A 
recording micropipette filled with 2M 
NaCl saturated with Fast Green dye (in 
vitro impedance, 2 to 10 megohms) was 
lowered into the region of the SNC [ante- 
rior, 1300 to 2400 gm; lateral, 1300 to 
2400 ,um (3)], and single unit activity was 
recorded (4). Dopaminergic neurons 
were located on the basis of previously 
described electrophysiological criteria 
(5). Briefly, these neurons have sponta- 
neous firing rates of 1 to 9 Hz, often dis- 
play a train of action potentials or 
"bursts" upon discharge, have biphasic 
waveforms (positive or negative) with 
amplitudes of 0.4 to 1.5 mV, and dura- 
tions as long as 4 msec. All control cells 
(dopaminergic neurons tested with hy- 
pertonic saline, L-glucose, or D-fructose) 
also met the pharmacological criteria for 
mesencephalic dopaminergic cells (5). 
That is, their firing rates were slowed by 
the administration of a dopamine agonist 
(amphetamine) and increased by a dopa- 
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mine antagonist (haloperidol). In all ca- Hal Glu Hal 
ses only one cell was sampled per ani- TP J 
mal. At the end of each recording ses- o 15- 

sion, the site of the micropipette was a 

marked by passing a 40-,A cathodal cur- 
n 

rent for 10 minutes. The animals were 
then perfused and their brains removed - 
for histological verification of the elec- _ 
trode placement. 

Glucose or equiosmolar volumes of sa- I 0o _ 
line were administered through femoral 
vein catheters. Intravenous glucose (250 
mg/kg) inhibited the activity of all do- 
paminergic neurons sampled (N = 12). 5 minutes 
The onset of this decrease in activity be- Cumulative frequency histogram of a Fig. 2. Cumulative frequency histogram of a 
gan approximately 1 to 3 minutes after single dopaminergic neuron illustrating the in- 
glucose administration; cell discharge crease in firing rate produced by haloperidol 
ceased completely 3 to 7 minutes after (Hal; 0.2 mg/kg) and the suppression of cell 
injection. The individual action poten- activity 2.5 minutes after D-glucose adminis- 

tration (Glu; 250 mg/kg). A second haloperi- 
tials of these neurons changed just be- dol injection (0.2 mg/kg) during this period of 
fore the inhibition of activity. That is, the glucose-induced suppression was unable to 
waveforms became slightly irregular reverse this effect. Each vertical pen deflec- 
while displaying an increase in duration tion equals a 5-second average of neural activ- 

and a decre in amplitude Inhibition ity. Arrows indicate the intravenous adminis- 
oand 

a decrease in 
amplityude Inhibila tration of pharmacological agents. This neu- 

of spontaneous activity and similar ron was also responsive to sensory stimuli- 
waveform alterations were also seen af- mild tail pressure (TP) (4). 
ter subcutaneous glucose administration 
(250 mg/kg, N =6). With both intra- 
venous and subcutaneous injections, the gic neurons. They were inhibited by the 
neuronal activity was completely inhib- administration of amphetamine (1.0 to 
ited for at least 30 minutes, after which 2.0 mg/kg. intravenous) and subse- 
the recording sessions were terminated. quently increased their activity in re- 

A lower dose of glucose (15 mg/kg, in- sponse to haloperidol (0.1 to 0.3 mg/kg, 
travenous, N = 6) also inhibited the ac- intravenous). 
tivity of dopaminergic neurons. The We then asked if glucose inhibited do- 
spontaneous activity of three of these paminergic cell discharge by directly or 
cells was totally inhibited, and that of the indirectly stimulating the release of 
other three reduced by 60 to 85 percent dopamine, since such stimulation sup- 
(Fig. 1). We also examined the effects of presses impulse flow in dopaminergic 
this dose of glucose on the blood glucose 'neurons (8). We thus examined the ef- 
concentrations of animals anesthetized fects of glucose in rats administered the 
with chloral hydrate (N = 8). Blood was dopamine antagonist haloperidol (9). In 
collected 4 minutes before glucose ad- agreement with previous findings (5), 
ministration and 2, 4, 6, 8, 10, 12, 16, 20, haloperidol (0.1 to 0.5 mg/kg, intra- 
and 30 minutes thereafter (6). Blood glu- venous, N = 10) considerably increased 
cose concentrations were maximally ele- dopaminergic cell activity (pharmacolog- 
vated (by approximately 30 percent) at 4 ically confirming their dopaminergic na- 
minutes and quickly returned to pre-in- ture). The subsequent administration of 
jection levels (Fig. 1). The inhibition of glucose (250 mg/kg, intravenous) again 
dopaminergic neural activity lasted for 4 totally inhibited the discharge rates of all 
to 10 minutes, which corresponds to the dopaminergic neurons sampled (Fig. 2). 
period of elevated blood glucose. The ac- Furthermore, this inhibition could not be 
tivity of additional dopaminergic neu- reversed by the additional administration 
rons was not inhibited by the intra- of haloperidol (0.2 to 0.5 mg/kg, intra- 
venous administration of either an venous). Therefore, it seems unlikely 
equiosmolar solution of saline (N = 4) or that glucose blocks dopaminergic neu- 
the nonmetabolizable L-isomer of glu- ronal discharge by stimulating dopamine 
cose (150 mg/kg, intravenous, N = 5). receptors. All dopaminergic neurons re- 
Furthermore, fructose (15 mg/kg, intra- ported above were histologically located 
venous, N = 6; 150 mg/kg, intravenous, within the SNC. 
N = 3), a sugar not readily used by the In the course of these investigations, 
brain in vivo (7), did not alter dopaminer- recordings were also made from nondo- 
gic neuronal discharge. All of these con- paminergic neurons located in the zona 
trol cells met the previously described reticulata of the substantia nigra 
pharmacological criteria for dopaminer- (N = 11). None of these cells changed 
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their firing rates after glucose was admin- 
istered (250 mg/kg, intravenous). Neu- 
rons sampled in the red nucleus were al- 
so unresponsive to glucose treatment 
(N = 4). The spontaneous activity of lat- 
eral hypothalamic neurons is also sup- 
pressed by glucose (10). It may be of 
note that mesencephalic dopaminergic 
neurons project through this region (2). 

The effects of glucose administration 
on dopaminergic activity appear attribut- 
able to glucose, rather than some artifact 
of the injection procedure. Thus, the os- 
molarity of the glucose solutions injected 
was not a significant factor, since neither 
equiosmolar saline nor L-glucose inhib- 
ited dopaminergic cell activity (11). The 
delay in the cessation of dopaminergic 
activity for at least 3 minutes after intra- 
venous injection also indicates that the 
effects are a result of some metabolic ac- 
tion of glucose. In addition, the changes 
in the waveform accompanying the re- 
duction of activity suggests a local action 
at the level of the dopaminergic neurons. 

The findings that fructose did not 
change the discharge rates of dopaminer- 
gic cells provides some insights into the 
mechanisms by which glucose may af- 
fect dopaminergic activity. Fructose and 
glucose can be used as fuels by most pe- 
ripheral tissues, but fructose is not read- 
ily used by the brain in vivo (7). There- 
fore, receptors sensitive to changes in 
peripheral energy metabolism are prob- 
ably not involved in changing dopami- 
nergic firing. Insulin, however, may play 
some role in mediating the effects of glu- 
cose on dopaminergic activity. Fructose 
is much less effective than glucose in 
promoting insulin release (12). Con- 
sequently, glucose-induced increases in 
insulin secretion may be ultimately re- 
sponsible for the changes in dopaminer- 
gic transmission. For example, insulin 
might alter dopaminergic transmission 
by directly affecting cerebral metabolism 
by stimulating cerebral insulin receptors 
(13). Likewise, glucose or insulin may al- 
ter the metabolism of other central neu- 
rotransmitter systems, which in turn 
may modulate central dopaminergic ac- 
tivity (for example, y-aminobutyric acid, 
glycine, serotonin) (14). It is also pos- 
sible that glucose may directly alter the 
metabolism of central dopamine-contain- 
ing neurons. Thus, we have found that 
the waveform of the action potential of 
dopaminergic neurons is altered after 
glucose administration; glucose has been 
reported to increase synaptosomal dopa- 
mine uptake and tyrosine hydroxylase 
activity (the rate-limiting enzyme in 
dopamine synthesis) (15). 

It seems likely that the effects of glu- 
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cose on central dopaminergic transmis- 
sion are physiologically relevant. The 
lower dose of glucose (15 mg/kg, intra- 
venous) elevated blood glucose concen- 
trations by only 30 to 40 mg per 100 ml of 
blood. Food consumption or the mobili- 
zation of liver glycogen during stress can 
produce similar elevations (16). More- 
over, the length of time dopaminergic ac- 
tivity is suppressed after a 15-mg/kg dose 
of glucose appears to coincide with the 
period of elevated blood glucose concen- 
trations. Thus, daily physiological fluc- 
tuations in glucose availability may sig- 
nificantly influence dopamine-mediated 
activity in the brain. 

CHARLES F. SALLER 
Laboratory of Clinical Science, 
National Institute of Mental Health, 
Bethesda, Maryland 20205 

Louis A. CHIODO 
Psychobiology Program, 
Department of Psychology, 
University of Pittsburgh, 
Pittsburgh, Pennsylvania 15260 
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Fasting Associated with Decrease in Hypothalamic /-Endorphin 

Abstract. In rats that were fasted for 2 to 3 days there was a decline in hypotha- 
lamic, but not pituitary, fi-endorphin. There was no change in pituitary or hypotha- 
lamic adrenocorticotropin content as a result offasting. Endogenous opiates may be 
involved in physiological adaptation to fasting. 
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Abstract. In rats that were fasted for 2 to 3 days there was a decline in hypotha- 
lamic, but not pituitary, fi-endorphin. There was no change in pituitary or hypotha- 
lamic adrenocorticotropin content as a result offasting. Endogenous opiates may be 
involved in physiological adaptation to fasting. 

Organisms conserve energy during 
fasting in part by lowering the serum 
concentration of 3,5,3'-triiodothyronine 
(T3) and concomitantly increasing the 
concentration of 3,3',5'-triiodothyronine 
(reverse Ts) (1, 2), the latter having little 
or no calorigenic activity. In anticipation 
of famine, hibernating animals accumu- 
late extra calories either by increasing 
food intake and thus adipose tissue 
stores or by hoarding food in their nest 
(3). Hibernation and fasting both result 
in a state of anorexia (3), which may be 
an adaptation to prevent food-seeking 
energy expenditure until a time when 
food is plentiful. 

,/-Endorphin, an endogenous opiate 
found primarily in the central nervous 
system and anterior pituitary (4), stimu- 
lates food intake when administered in- 
traventricularly (5). Concentrations of/3- 
endorphin are increased in pituitaries 
from genetically obese mice and rats (6, 
7). Naloxone, an opiate antagonist, sup- 
presses spontaneous food intake and 
weight gain when administered subcuta- 
neously to normal rats (8), normalizes 
food intake in genetically obese rodents 
(9), and awakens hibernating animals 
(10). In the present study our purpose 
was to determine whether fasting affects 
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the concentration of /-endorphin in the 
anterior pituitary or hypothalamus, areas 
that are rich in this opiate and that have 
been linked with the regulation of feed- 
ing behavior. 

Male Sprague-Dawley rats (225 to 250 
g) were housed at 22?C with a 12-hour 
dark-light cycle in individual cages for 1 
week, during which time they received 
daily handling and free access to food 
and water. They were then divided into 
four groups, and food was withheld from 
three of the four groups for 1, 2, or 3 
days. 

On the morning of study, the animals 
were decapitated, and the hypothalamus 
and pituitary were rapidly removed. The 
posterior pituitary was gently removed 
from the remaining pituitary with an oph- 
thalmic forceps and discarded. The tis- 
sues were then homogenized in buffer 
(0.05M P04, 0.15M NaCl,pH 7.4, with 1 
mM N-ethylmaleimide, a potent pepti- 
dase inhibitor) at 4?C (4, 5, 11) with a 
Brinkmann polytron at-setting 6 for 10 
seconds. /3-Endorphin was measured by 
radioimmunoassay based on the method 
of Guillemin et al. (12) with an antibody 
that has an approximate 10 percent 
cross-reactivity with human 3-lipopro- 
tein but no cross-reactivity with adreno- 
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Table 1. Effect of fasting on central nervous system /-endorphin. Values represent means ? 
standard deviation. Nonsignificant = P > .05; P values represent comparisons of fasted ani- 
mals to nonfasted controls (unpaired t-test). N.S., not significant, 

/3-Endorphin (nanograms per milligram of protein) 

Animal N Hypothalamic Pituitary 

Concentration P Concentration P 

Control 20 3.45 + 1.7 1,510 + 998 
Fasted 1 day 12 3.40 + 0.4 N.S. 1,151 + 518 N.S. 
Fasted 2 days 7 1.69 + 0.8 < .02 1,231 + 592 N.S. 
Fasted 3 days 12 1.22 ? 0.3 < .01 1,171 + 542 N.S. 
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