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Developmental Equations for the Electroencephalogram 

Abstract. Thirty-two linear regression equations predict the frequency composi- 
tion of the electroencephalogram within four frequency bands, for four bilateral 
regions of the brain, as a function of age. Equations based on such data from 
large groups of healthy children in the United States and Sweden are closely similar. 
These equations describe the development of the electrical activity of the normal 
human brain, independent of cultural, ethnic, socioeconomic, or sex factors. 

Developmental Equations for the Electroencephalogram 

Abstract. Thirty-two linear regression equations predict the frequency composi- 
tion of the electroencephalogram within four frequency bands, for four bilateral 
regions of the brain, as a function of age. Equations based on such data from 
large groups of healthy children in the United States and Sweden are closely similar. 
These equations describe the development of the electrical activity of the normal 
human brain, independent of cultural, ethnic, socioeconomic, or sex factors. 

The frequency composition of the 
electroencephalogram, or EEG, reflects 
the age and the functional status of the 
brain. With maturation the dominant fre- 
quency becomes more rapid, and brain 
damage, dysfunction, or deterioration 
causes frequency slowing in the brain re- 
gions involved (1). These conclusions 
were initially based on qualitative im- 
pressions gained by visual examination 
of ink tracings. By means of analog fil- 
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ters and special-purpose frequency ana- 
lyzers and, more recently, by using 
general-purpose digital computers imple- 
menting the fast Fourier transform 
(FFT), these conclusions have been con- 
firmed by quantitative studies of changes 
in the EEG frequency spectrum with age 
and with brain disease (2). 

The EEG frequency spectrum is con- 
sidered to contain four major frequency 
bands: delta (1.5 to 3.5 Hz), theta (3.5 to 
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Fig. 1. Regression equations for data from U.S. children (N = 306) and Swedish children 
(N = 342) for each frequency band and derivation. Dashed lines (from right side of head) and 
dotted lines (left side) describe the equations derived from U.S. children. Solid lines describe 
the Swedish data. The data are valid for children aged 6 to 16 years. 
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7.5 Hz), alpha (7.5 to 12.5 Hz), and beta 
(12.5 to 25 Hz) (3). Factor analysis of the 
EEG frequency spectrum has shown that 
these four bands correspond to inde- 
pendent factors (4). 

Using sharply tuned analog band-pass 
filters, Matousek and Petersen (5) ob- 
tained EEG samples, recorded during 1- 
minute resting (eyes closed) periods, 
from 561 healthy male and female Swed- 
ish children aged 1 to 21 years. After vi- 
sually editing the samples to remove arti- 
facts, and separating the samples into 
groups according to the years of age of 
the children, they computed for each age 
group, in yearly increments, the means 
and standard deviations of the EEG am- 
plitude in the delta, theta, alpha, and 
beta bands in bilateral frontotemporal, 
temporal, central, and parieto-occipital 
derivations (6). Using these data, Ma- 
tousek and Peters6n constructed norma- 
tive tables!that revealed smooth changes 
in each of these parameters as the mean 
age of the children in each group in- 
creased (5). 

In our laboratories, 60 seconds of arti- 
fact-free EEG samples (recorded with 
eyes open and eyes closed) have been 
gathered routinely from approximately 
750 normal and 2500 learning-disabled 
children aged 5 to 21 years. In our sys- 
tem we use computer software for the 
automatic on-line rejection of data con- 
taminated by artifacts (7, 8). Subsequent 
visual editing prior to quantitative analy- 
sis removes any artifacts that elude the 
computer algorithm (9, 10). In the first 
1000 sessions, these samples were ob- 
tained both at the beginning and end of a 

1-hour examination of evoked potentials. 
Comparisons of test-retest reliability 

(within session) of absolute power mea- 
sures in each frequency band revealed 
poor replicability in both the eyes open 
and eyes closed condition. Therefore, 
these measures were transformed to rel- 
ative power (percentage) by dividing the 
absolute power in each frequency band 
by the total power in all four bands, sep- 
arately or each derivation. For the eyes 
open EEG, substantial variability re- 
mained in spite of this transformation. 
However, relative power measures re- 
vealed excellent replicability for the 
eyes closed EEG (11). Similar con- 
clusions have been reached by others 
(12). This may indicate that the relative 
power of the eyes closed EEG is less 
sensitive to changes in alertness or atten- 
tion than other measures studied. 

The distribution of relative power val- 
ues in large samples of normally func- 
tioning children was examined to devel- 
op valid statistical criteria for evaluation 
of individual values. A logarithmic trans- 
formation, log (x/100 - x), was found to 
achieve approximately Gaussian distri- 
butions for all relative power measures 
(x). EEG features could therefore be 
subjected legitimately to Z-transforma- 
tions relative to the corresponding 
means and standard deviations of data 
samples obtained from groups of healthy 
children. Interpretation of the numerical 
data yielded by quantitative analysis of 
brain electrical activity can thereby be 
greatly simplified, since the probability 
that any given measure is abnormal can 
then be assessed by conventional para- 

metric statistics. Electrophysiological 
evaluations in which clinically relevant 
features are quantitatively extracted and 
subjected to Z-transformation are re- 
ferred to as neurometric examinations. 

The orderly nature of the published 
normative tables as a function of age (5), 
and our findings that relative power mea- 
sures were replicable and amenable to 
parametric evaluations, encouraged us 
to construct regression equations to de- 
scribe maturational changes in the EEG, 
to test the accuracy of these equations in 
diverse groups of children, and to eval- 
uate their sensitivity to brain disease or 
dysfunction. Our first step was to con- 
vert the published mean values and stan- 
dard deviations to relative power (8, 13), 
and then to transform these data to 
Y = log (x/100 - x), wherex refers to the 
relative power value. A polynomial re- 
gression equation across the population 
means as a function of age was computed 
for each transformed EEG parameter in 
each derivation. This takes advantage of 
the full body of data to minimize irregu- 
larities reflecting the grouping of children 
according to age of nearest birthday, 
small sample sizes, and possible sam- 
pling errors at each age in the published 
data. 

The transformed data of group means 
were fitted with sixth order orthogonal 
(Chebyshev) polynomials (14). F tests 
revealed many significant contributions 
by terms up to the fourth order, with 
higher order terms contributing less than 
1 percent of the variance. The equations 
were reduced to standard polynomials of 
the form: Y = Co + Ctt + Ct2 + C3t3 + 

Table 1. Coefficients of linear regression equations Co + C,t, for relative power and standard deviations for U.S. children (N = 306) and Swedish 
children (N = 324), for log (x/100 - x), where x denotes relative power in each frequency band. No valid estimate of standard deviation of the 
relative power can be computed from the published Swedish data (5). The data are valid for children aged 6 to 16 years. 

Delta Theta Alpha Beta 

Deri- Relative Standard Relative Standard Relative Standard Relative Standard 
vation power deviation power deviation power deviation power deviation 

Co C C C C Co C C1 Co C1 Co C1 1 C C 

Parieto-occipital 
U.S. P301 -.41 -.043 .28 -.01 -.06 -.063 .31 -.01 -.34 .047 .41 -.02 -1.24 .029 .23 -.01 
U.S. P402 -.37 -.046 .29 -.01 -.06 -.063 .31 -.01 -.37 .049 .43 -.02 -1.25 .030 .29 -.01 
Sweden* -.44 -.040 -.12 -.055 -.38 .050 -1.24 .029 

Central 
U.S. C3Cz -.33 -.026 .25 -.01 -.11 -.028 .21 .00 -.52 .028 .40 -.02 -1.25 .036 .19 -.01 
U.S. C4Cz -.33 -.025 .20 .00 -.10 -.030 .22 -.01 -.52 .027 .34 -.01 -1.22 .035 .20 -.01 
Sweden* -.35 -.024 -.14 -.026 -.38 .023 -1.20 .042 

Temporal 
U.S. T3T5 -.31 -.039 .26 -.01 .00 -.060 .30 -.01 -.72 .062 .38 -.01 -.086 .008 .46 -.02 
U.S. T4T6 -.35 -.036 .25 -.01 .01 -.061 .36 -.01 -.67 .059 .43 -.02 -0.91 .011 .38 -.02 
Sweden* -.41 -.029 -.13 -.043 -.55 .043 -1.04 .027 

Frontotemporal 
U.S. F7T3 -.31 -.018 .25 -.01 -.25 -.028 .31 -.01 -.89 .040 .27 -.01 -0.60 .010 .55 -.03 
U.S. FsT4 -.31 -.019 .24 -.01 -.24 -.030 .25 -.01 -.81 .035 .28 -.01 -0.61 .012 .45 -.02 
Sweden* -.30 -.020 -.28 -.025 -.83 .032 -0.80 .029 

*These equations are based on pooled data from left and right sides, as published by Matousek and Peters6n (5). 
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C4t4, where t is age in years minus one 
(15, 16) and the coefficients Ci are con- 
stants. Thus, 16 equations were obtained 
(for delta, theta, alpha, and beta in fronto- 
temporal, temporal, central, and parie- 
to-occipital derivations), each with five 
coefficients (17). 

If the actual value of an EEG frequen- 
cy parameter measured from a child is x, 
if that value is transformed to Y = log (x/ 
100 - x), if the predicted mean value Y 
for the corresponding EEG parameter is 
calculated by entering the age t of the 
child minus one into the appropriate 
polynomial, and if S is the corresponding 
standard deviation of the mean, then 
Z = (Y- Y)/S defines the Z-transfor- 
mation. This transformation permits esti- 
mation of the probability of obtaining the 
observed value Y by chance, for that 
EEG parameter in that anatomical deri- 
vation, in a normal healthy child of age t. 

The precision with which such mea- 
surements fell within the predicted distri- 
butions was tested in an independent 
group of 140 normal, healthy children, all 
performing at grade level in school. 
Since the measurements were performed 
separately for the derivations on the left 
and right sides, there were 32 EEG pa- 
rameters computed for each child, or 
4480 values for the total group. Of these 
values, 4202 (93.79 percent) fell within 
the 5 percent confidence level from the 
mean, while 6.21 percent fell beyond the 
5 percent confidence level (false posi- 
tives). Of these false positives, 4.12 per- 
cent fell beyond the 5 percent but not the 
1 percent confidence level, 1.72 percent 
beyond the 1 percent but not the 0.1 per- 
cent level, and 0.37 percent beyond the 
0.1 percent level. This distribution is 
quite similar to that predicted by the 
equations (11). These false positives 
were distributed across the set of normal 
children and were not found to occur 
within any specific subgroup. The ob- 
served incidence of false positives in 
these data, when subjected to quantita- 
tive analysis, compares favorably with 
the 12 to 30 percent reported with sub- 
jective EEG analysis of normal children 
(18). 

Further, the composition of our 
sample permitted us to define and com- 
pare different matched subgroups, each 
with no less than 25 members: white 
children from middle-class suburbs of 
New York, white children from lower 
income communities outside New York 
City, black children from the Harlem dis- 
trict of New York, black children from 
small farm communities in Barbados 
(19), male children, female children, and 
groups with different age composition 
across the age range 5 to 12 years. None 
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of these subgroups showed an incidence years prior to our evaluation. Second, 
of false positives at the P < .05 level any children whose raw EEG record re- 
which was significantly greater than vealed apparent epileptiform activity on 
chance, nor was any group significantly visual examination were excluded. Only 
different from any other group at the 306 of our 600 ostensibly "normal" vol- 
P < .05 level with respect to the distri- unteers could be used after this pruning 
bution of any of the 32 EEG parameters, (20). 
as assessed by X2 tests (11). This confirmed normal sample was 

While these computations were being then divided into two split-half sub- 
performed, the same EEG parameters groups, balanced for chronological age 
were being extracted from additional and date of test. A regression equation 
children in our normal sample. Because was then computed for all 32 EEG pa- 
the total size of our normal sample in the rameters for the individuals in the first- 
6- to 16-year age range (N = 600) was half subgroup across the age range 6 to 
greater than the Swedish sample in that 16 years. The incidence of false positives 
range (N = 324), we derived a new set of (Z-transformation values beyond the .05 
regression equations for that age range probability level) was found to be 6.7 
based completely on U.S. children. We percent. Since this value seemed accept- 
examined the medical and developmental ably close to the level expected by 
histories of this group of children. Fol- chance, the two groups were merged and 
lowing the stringent criteria used by Ma- final regression equations were comput- 
tousek and Petersen (5), first we ex- ed for the 32 EEG parameters. We found 
cluded from the "normal" sample all that the data could be adequately fitted 
children who could plausibly be consid- by a set of linear equations of the form 
ered "at risk" because of extreme pre- Co + C1t (21). Since our goal was now to 
or perinatal trauma, with childhood his- compare regression equations describing 
tories that included prolonged high feb- these EEG parameters in two indepen- 
rile illness, loss of consciousness due to dent populations, new regression equa- 
concussions, convulsions, extreme be- tions were computed on the group means 
havior problems, failure in school at any of the Swedish children (5) across this 
grade level, a standard score on the Wide more restricted age range. These data 
Range Achievement Test, below grade were also well fitted by a linear equation. 
level in any skill (below 90), an IQ esti- Presumably the higher order polynomial 
mate from the Peabody Picture Vocabu- terms in our initial regression equations 
lary Test below 90, or any grade below were due to the rapid changes of these 
passing level on school report cards for 2 parameters in the first 5 years and their 

Table 2. Coefficients in fourth-order polynomial regression functions for logarithmic transform 
of relative power. The standard deviations of the log relative power for each frequency band in 
every derivation were as follows. Central: delta, 0.17550; theta, 0.19706; alpha, 0.27472; beta, 
0.14968. Temporal: delta, 0.19515; theta, 0.21789; alpha, 0.25411; beta, 0.20643. Parieto-occipi- 
tal: delta, 0.22553; theta, 0.21229; alpha, 0.26090; beta, 0.17554. Frontotemporal: delta, 
0.13585; theta, 0.13763; alpha, 0.18157; beta, 0.19110. Based on data from (5, 16). 

Fre- 
quency Co* C C2 C C 

band 

F7-Ts and F8-T4 
Delta 0.05026793 - 0.02864339 0.00268197 - 0.00024649 0.00000726 
Theta - 0.49661124 0.02704753 - 0.00219526 - 0.00012897 0.00000637 
Alpha - 1.19101954 0.11536730 - 0.01021430 0.00052462 - 0.00001035 
Beta - 0.69595569 - 0.05826711 0.00636409 - 0.00002820 - 0.00000592 

Cz-C3 and Cz-C4 
Delta 0.01337487 -0.11086171 0.01164788 - 0.00062616 0.00001153 
Theta - 0.39715552 0.07269696 - 0.01230534 0.00065100 - 0.00001268 
Alpha - 0.94571376 0.17154604 - 0.01993426 0.00110665 - 0.00002212 
Beta - 0.95783710 - 0.09368554 0.01825462 - 0.00099472 , 0.00001902 

T3-T5 and T4-T6 
Delta 0.01312087 - 0.10731703 0.01305750 - 0.00081664 0.00001665 
Theta - 0.41266653 0.10212188 - 0.02114789 0.00119691 -0.00002312 
Alpha - 1.22848630 0.18772255 - 0.01056178 ' 0.00017109 0.00000299 
Beta - 0.70206171 - 0.10165458 0.01017377 - 0.00014639 - 0.00000520 

P3-O1 and P4-02 
Delta 0.14496185 - 0.20564358 0.02497562 - 0.00150341 0.00003163 
Theta -0.41780865 0.13641311 - 0.03206439 0.00204809 - 0.00004317 
Alpha - 1.14453661 0.25399819 - 0.02050309 0.00080608 - 0.00001157 
Beta - 1.06820560 -0.06939101 0.01273942 - 0.00057574 0.00000711 

*Co does not include the calibration constant, which must be determined separately for any set of methods 
used to extract the frequency measures. 
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leveling off between 17 and 2 
Figure 1 illustrates the two s< 

gression equations derived from 
and Swedish children. Table 1 
the two coefficients of the corre 
linear equations, Co + Clt, wh 
the intercept, C1 the slope, and 
of the child. Table 1 also gives 
coefficients of the linear regressi 
tion for the standard deviations 
frequency band in each derival 
data reveal a striking similarity 
the two sets of regression equati 
close correspondence of these t 
pendent descriptions of the evc 
these EEG parameters in child 
two different countries suggests 
equations constitute a first ap 
tion to a quantitative descripti( 
rules governing the maturation 
EEG parameters in the norma 
human brain. Since we found th; 
served values are replicable wil 
viduals and across cultures, wi 
that they may be generally appli 
dependent of cultural, ethnic, 
nomic, sex, or age factors. Tt 
linear regression equations, bas 
tomatic digital techniques of da 
sition and analysis, outdate th 
order polynomials initially deri 
the Swedish data. However, pe 
tension of our normative data t 
age range, the initial equatiol 
practical utility for evaluation o 
uals in the age ranges 1 to 5 anc 
years. Accordingly, the coeffi 
the equations Y = Co + Ct - 

C3t + C4t4, and the correspond 
dard deviations, are presented ir 

We have also obtained evidl 
that although the incidence of 
able Z values in healthy childr 
dom beyond the chance level 
stable EEG parameters, positiv 
occur in a high proportion of cl 
risk for various neurological 
and for brain dysfunctions r 
learning disabilities. 
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