
P-wave delay method is based on a num- 
ber of assumptions and cannot resolve 
details in the velocity-depth profile, it 
does lend support to the type of inter- 
pretation we have presented. For ex- 
ample, the Carder model (with a 30-km 
crust in which velocities are 6.1 km/sec), 
considered in the context of the Press 
and Biehler study, would be associated 
with a P-wave delay of at most 0.3 sec- 
ond, relative to Pasadena, whereas the 
observed delay was 0.8 second. 

Of course, many uncertainties about 
the nature and structure of the crust of 
the Sierra Nevada remain, but we be- 
lieve that we have demonstrated that 
the root of the Sierra Nevada exists and 
that it projects downward to a depth of 
about 55 km beneath the highest moun- 
tains of the range, as proposed by in- 
vestigators as far back as Lawson (1). 
Our preferred model of the root of the 
Sierra Nevada (Figs. 5A and 6A) is com- 
patible with modern principles of plate 
tectonics. 

Most of the remaining ambiguities and 
uncertainties about the structure of the 
root of the Sierra Nevada could readily 
be resolved by analysis of travel times 
from local and distant earthquakes, by 
detailed seismic profiling across and 
along the axis of the range, and by appli- 
cation of the latest techniques of mod- 
eling to seismic record sections. 
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Leaf movements in higher plants have 
been recognized for many years. Per- 
haps the most widely known examples 
are rapid leaf closure in Mimosa and the 
circadian sleep movements in beans and 
other leguminous species in which leaves 
move from a horizontal to a vertical posi- 
tion at night (1). The movements of 
leaves fall into three categories: nycti- 
nastic (sleep movements), seismonastic 
(movements in response to shaking), and 
heliotropic (1-3), which is the subject of 
this article. As the name implies, helio- 
tropism is the movement of leaves fol- 
lowing the sun and is of two types: 
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lowing the sun and is of two types: 

diaheliotropism and paraheliotropism. 
The movement of blades of diaheliotro- 
pic leaves is such that they remain per- 
pendicular to the sun's direct rays 
throughout the day. The movement of 
blades of paraheliotropic leaves is such 
that they remain parallel to the sun's 
direct rays. In effect then, heliotropic 
leaves are solar trackers (Fig. 1). The he- 
liotropic leaf movements may be accom- 
plished in several ways. The two most 
commonly observed means involve pe- 
tiole twisting and pivotal movement of 
the pulvinus, a turgor-dependent struc- 
ture located at the base of the leaf blade 
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(1, 2). These leaf movements are rapid 
and reversible tropic responses and 
should not be confused with or consid- 
ered as growth responses. 

Physiological aspects of leaf move- 
ments and the morphological mecha- 
nisms for achieving them have been 
studied extensively (1-3). However, 
there has been little discussion of the 
adaptive value of either of these types of 
leaf movements and the environmental 
regimes in which natural selection 
should favor them. In this article, the he- 
liotropic leaf movements in arid land 
plants, the potential consequences to 
metabolic activity, and the probable 
adaptive value to native plants and 
agronomic species are discussed. 

Diaheliotropism will have a tremen- 
dous impact on the daily rate of net pho- 
tosynthesis because it allows a sunlit leaf 
to experience high solar irradiances and 
to operate at maximal rates throughout 
the day (4). This trait could be of particu- 
lar value to ephemeral or annual vegeta- 
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tion that must complete its life cycle in a 
brief period before the onset of long peri- 
ods of unfavorable conditions such as 
drought or high temperatures. Para- 
heliotropism would be of value in allow- 
ing annual vegetation to survive inter- 
mittent unfavorable periods that occur 
before the end of the growing season. 
Thus, we might predict a high frequen- Fig. 1. Leaves of Lu- 
cy of solar tracking in plant species of pinus arizonicus ori- 

.11* *J~ T .T~ i~ 'enting to track the 
ard lands. Heliotropic leaf movements nn sun. 
are known to occur in several species 
in the families Asteraceae, Fabaceae, 
and Malvaceae (3-8), but the extent of 
its distribution in other families is un- 
known. 

Solar Tracking in Desert Plants 

In the arid regions of the southwestern 
United States, the vegetation is usually 
dominated by perennials, primarily 
shrubs and succulents (9). After winter 
or summer rainstorms, however, an 
ephemeral vegetation appears and at 
times carpets the soil surface (10). We 
have surveyed this ephemeral vegetation 
for solar tracking by leaves in three types 
of plant communities with short growing 

denia (Boraginaceae), Dicoria (Aster- 
aceae), Lotus (Fabaceae), Lupinus (Fa- 
baceae), Malvastrum (Malvaceae), Pala- 
foxia (Asteraceae), and Sphaeralcea 
(Malvaceae) (14). In the summer annual 
vegetation with the shortest growing sea- 
son, 12 genera, or 75 percent of the annu- 
als in the genera sampled, tracked the 
sun. These genera were Allionia (Nyc- 

Summary. Leaves of many desert and agricultural species have the ability to move 
diurnally, orienting perpendicular or parallel to the sun's direct rays. This phenomenon 
is widespread in many plant families and occurs in both C3 and C4 photosynthetic 
pathway plants. In the annual flora of desert communities, solar tracking becomes 
more frequent as the length of the growing season decreases. Leaves that are per- 
pendicular to the sun's direct rays for tracking appear to have high photosynthetic 
rates throughout the day, whereas leaves parallel to the sun's rays have reduced leaf 
temperatures and transpirational water losses. 

seasons of differing lengths (II). The 

plant communities chosen were coastal 
sage scrub, which grows during a winter 
precipitation period of 20 to 30 weeks; 
Mohave and Colorado desert scrub, 
which grow in winter during a precipi- 
tation period of 15 to 20 weeks; and 
southern Arizona desert scrub, which 
grows during a summer precipitation pe- 
riod of 5 to 15 weeks (12). 

In the annual floras surveyed, the fre- 
quency of solar tracking increased as the 
length of the growing season declined. 
The winter coastal sage vegetation has 
the longest growing season, and only two 
genera, Lupinus (Fabaceae) and Malva 
(Malvaceae), comprising 11 percent of 
the annuals in the genera sampled, 
showed diaheliotropic movements (13). 
Nine genera of annuals, or 28 percent of 
those sampled in the desert's winter an- 
nual vegetation, tracked the sun (14). 
These included Abronia (Nyctagi- 
naceae), Astragalus (Fabaceae), Col- 
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taginaceae), Amaranthus (Amarantha- 
ceae), Boerhaavia (Nyctaginaceae), Eu- 
phorbia (Euphorbiaceae), Helianthus 
(Asteraceae), Kallstroemia (Zygophyl- 
laceae), Portulaca (Portulaceae), Pro- 
boscidea (Martyniaceae), Solanum (So- 
lanaceae), Tidestromia (Amaranthace- 
ae), Trianthema (Aizoaceae), and Tribu- 
lus (Zygophyllaceae) (15). Although our 
survey was not comprehensive, it is 
rather indicative of a pronounced trend 
in the vegetation sampled. 

Our studies indicate that solar tracking 
is much more widespread than has been 
reported. We have identified heliotropic 
leaf movements in plants from 16 dif- 
ferent families (16). The tracking ability 
is independent of photosynthetic path- 
way and taxonomic affinity, since spe- 
cies representing both C3 and C4 photo- 
synthetic pathways and families from di- 
verse plant orders demonstrated solar 
tracking. Leaf movements for solar 
tracking are even more general than our 

investigations of annuals indicate, as 
they also occur in some desert perennials 
that have deciduous leaves (17). 

Paraheliotropic or leaf cupping move- 
ments were observed late in the growing 
season in both annual and perennial gen- 
era including Astragalus, Cassia, Kall- 
stroemia, Lotus, Lupinus, Stylosanthes, 
and Tribulus. All of these genera have 
compound leaves and the parahelio- 
tropic movements occurred primarily 
along leaf midribs. 

Solar tracking ability can be related to 
solar irradiance by determining the frac- 
tion of the sun's direct rays that are in- 
tercepted. The angle between the leaf 
blade and a perpendicular to the sun's di- 
rect rays is termed the cosine of in- 
cidence of the leaf (18). In a plant with 
leaves that track the sun perfectly, this 
angle will be 0? (that is, the leaf blade is 
perpendicular to the sun's rays) or a co- 
sine of incidence of 1.0. Winter and sum- 
mer desert annuals track the sun closely 
throughout the day (Fig. 2) by changing 
leaf azimuth and leaf angle. Slight devia- 
tions in the cosine of incidence may oc- 
cur at dawn and dusk in some species be- 
cause of constraints on leaf movement 
that prevent full vertical extension of the 
leaf. 

Canopies were relatively sparse in the 
species observed, and all leaves, not just 
a small fraction, tracked the sun. Boer- 
haavia annulata, Lupinus arizonicus, 
and Kallstroemia grandifora demon- 
strated this for both winter and summer 
desert annual species (Fig. 3). Generally, 
leaf azimuths were within 15? of solar 
azimuth, slightly ahead in the morning 
hours and slightly behind in the after- 
noon hours. In contrast, nonsolar track- 
ing desert annuals such as Phacelia cal- 
thafolia were observed to have random 
leaf azimuth distributions (Fig. 3). 

1095 



Diaheliotropism and Irradiance 

One immediate consequence of diahe- 
liotropism is that leaves experience a 
high and relatively constant solar irra- 
diance (Fig. 4). Solar irradiance incident 
on these leaves is attenuated below the 
solar constant only by changes in the air 
mass along the optical path. In contrast, 
the solar irradiance on leaves with fixed 
leaf angles is lower because it depends 
additionally on the geometric orientation 
(angle and azimuth) of the leaf relative to 
the sun. For example, consider the solar 
radiation received on a clear day (19). 
The daily total of incident photosynthet- 
ic quantum flux (400 to 700 nanometers) 
on the leaf that tracks the sun will be 8.09 
millimoles per square centimeter and on 
the leaf with a fixed angle of 0? it will be 
5.85 mmole/cm2. The enhancement of to- 
tal incident quantum flux in diaheliotro- 
pic versus flat leaves will increase far 
beyond this 38 percent as the leaf angle 
of the nontracking leaves increases. 
When fixed leaf angles are vertical (ran- 
dom azimuth and 90? from the horizon- 
tal), the enhancement by solar tracking 
will be 167 percent. Diaheliotropic 
leaves have more quanta available for 
photosynthesis, and if physiologically 
able to use the high irradiances (4, 20- 
24), a greater potential daily photosyn- 
thetic gain than nontracking leaves (4, 8, 
25). Thus diaheliotropic leaf movements 
may give a competitive advantage in 
mixtures with nontracking species. En- 
ergy and heat balance equations point 
out a possible disadvantage of diahelio- 
tropism in that the leaves are under a 
greater heat load, resulting in increased 
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leaf temperatures and increased rates of 
water loss (18, 26, 27). Plants with dense 
canopies may experience a second dis- 
advantage from solar tracking since it 
will benefit only the outermost leaves 
and may greatly reduce the photosyn- 
thetic quantum flux available to leaves 
lower in the canopy. 

Solar Tracking as a Component of 

Productivity 

Many morphological and physiological 
factors affect photosynthesis and inter- 
act to determine rates of plant productiv- 
ity (28). Three important aspects of plant 
productivity are canopy and leaf mor- 
phology, physiological and biochemical 
components, and solar tracking ability. 
We expect that the extent to which these 
factors will affect primary productivity in 
native annual vegetation should change 
as a function of the length of the growing 
season (Fig. 5). In habitats with long 
growing seasons, there will be ample 
time for annuals to develop extensive 
canopies and some shading will occur. 
This would lead to an environment in 
which leaves compete for light and in 
which canopy and leaf morphology char- 
acteristics such as leaf angle, leaf area 
distribution within the canopy, inter- 
nodal elongation capacity, and the num- 
ber of palisade cell layers per leaf would 
be most influential in determining the 
rate of primary productivity. Because of 
the reduced irradiance on the average 
leaf within the canopy, the rate of photo- 
synthesis should be less sensitive to 
physiological factors that determine the 

Abronia villosa f Amaranthus palmeri . 

. ?. . ? ? ? - : - 

_ 

_ ?=?.. - 

v Malvastrum rotundifolium . Boerhaavia wrightii 

, Palafoxia linearis Kallstroemia grandiflora ? 

6 10 14 18 6 10 14 18 

Hour of day 

Fig. 2 (left). Representative diurnal courses of the cosine of incidence 
for leaves of desert winter annuals (left) and summer annuals (right). 
Sample size for each data point is nine. Cosine of incidence was mea- 
sured with an inclinometer and compass and calculated according to 
(18). Fig. 3 (right). Frequency histograms for the orientation of 
leaves of three solar tracking species, Boerhaavia annulata, Lupinus 
arizonicus, and Kallstroemia grandiflora, and a nonsolar tracking spe- 
cies, Phacelia calthafolia. The sun's azimuth at the time of the mea- 
surement is indicated. 
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intrinsic maximum photosynthetic ca- 
pacity of a leaf. 

In shorter growing seasons, less time 
is available for canopy development, and 
the mean solar irradiance on a leaf will 
be relatively high. Selection for physio- 
logical factors affecting productivity will 
be greater in these environments. Fac- 
tors such as photosynthetic enzyme con- 
centrations, chlorophyll photosynthetic 
unit size, and stomatal conductance for 
carbon dioxide transfer should increase 
so that the intrinsic photosynthetic ca- 
pacity of the leaf is greater. There is a 
limit, however, to the extent to which 
physiological components of the intrinsic 
photosynthetic capacity can be in- 
creased. This limit in conversion effi- 
ciency would occur when individual 
leaves operate at maximum quantum 
yield capacities (29-31); the limit appears 
to be fixed in higher plants at approxi- 
mately 0.053 mole of CO2 per mole of 
quanta (31). At this point, the rate of pri- 
mary productivity will be determined by 
the solar irradiance incident on the leaf. 
With further reduction in the length of 
the growing season, solar tracking is a 
means of increasing primary productiv- 
ity and may be essential if annual plants 
are to grow to the minimum size neces- 
sary to reproduce and complete their life 
cycles. 

When predicted trends (Fig. 4) in the 
components of productivity are applied 
to the observations of annual vegetation 
in arid lands, it appears that canopy de- 
velopment is most extensive in the coast- 
al sage annuals, which have the longest 
growing season (32, 33). Intrinsic photo- 
synthetic capacities of the coastal sage 
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annuals are the lowest of the three types 
of annual vegetation studied and range 
from 20 to 40 micromoles of CO2 per 
square meter per second (33). Photosyn- 
thetic capacities of winter and summer 
annuals are comparatively high, ranging 
from 35 to 60 and 35 to 55 ,umole per 
square meter per second, respectively 
(4, 21, 24, 30, 33). The solar tracking data 
for leaves are also consistent with our 
expectation that solar tracking ability is 
rare among coastal sage annuals, which 
have the longest growing season of the 
three plant communities, and occurs 
most frequently in the desert summer an- 
nuals, which have the shortest growing 
season. It is possible, however, that part 
of the decreased frequency of solar 
tracking in coastal sage annuals results 
because that habitat is somewhat cloud- 
ier than the other desert habitats. This 
cloudiness would reduce the possible se- 
lective advantages for solar trackers. 

Implications for Agriculture 

Diaheliotropic leaf movements have 
been reported in various crop and pas- 
ture species including cotton (5), sun- 
flowers (7, 8), Townsville stylo (34), 
cowpeas (27), lucerne (6), soybeans (35), 
and to some extent beans (7). The sup- 
porting data generally take the form of 
diurnal frequency changes in leaf azi- 
muth of canopy leaves; however, where 
measurements of the cosine of incidence 
are reported, values approach 1.0. Iso- 
lated plants have been shown to track 
the sun better than plants growing in 
rows, and solar tracking appears to have 
some effect on competitive ability (36). 
Solar tracking ability declines within the 
plant canopy and is affected by both row 
arrangement and planting density (5, 23, 
36). The extent to which solar tracking 
appears in the leaves of agricultural spe- 
cies or even within varieties of the spe- 
cies named above is largely unknown. 
Findings suggests that varieties of cotton 
(5) and soybeans (35, 37) differ in their 
solar tracking abilities. 

A few studies that have addressed the 
question of diaheliotropism and plant 
productivity (4, 8, 25) showed that the 
average daily interception of direct sun- 
light was 30 to 40 percent higher in 
leaves that track the sun than for fixed 
leaves with random azimuths. This 
agrees with Fig. 4. Comparing rates of 
photosynthesis among C3 dicot crop spe- 
cies, we find that those with solar track- 
ing ability tend not to be saturated at 
midday irradiances; thus maximum rates 
tend to be higher than for those species 
that do not track the sun (Fig. 6A). As a 
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consequence of solar tracking, daily pro- 
ductivity increases proportionally as 
sunlight interception increases. Photo- 
synthesis is enhanced particularly in the 
morning and afternoon hours when the 
solar elevation is lower and plant-water 
relations are more favorable (Fig. 6B). 
Small differences in daily productivity 
compounded over the length of a grow- 
ing season could lead to large differences 
in biomass and convey a competitive ad- 
vantage on solar tracking species. How- 
ever, more studies of productivity at the 
individual leaf and canopy levels are re- 
quired before a definite statement of the 
advantages of solar tracking can be 
made. 
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Indirect evidence to support the no- 
tion that solar tracking conveys a com- 
petitive advantage in agricultural situa- 
tions comes from an analysis of weed 
species in the Southwest. Among all the 
major winter and summer weed species 
in the Arizona crop systems (38), a re- 
markable 53 percent of these species are 
solar trackers. 

The extent to which solar tracking will 
increase plant productivity and yield is 
still unclear, although our present knowl- 
edge strongly implies that the effect will 
be significant. There are two additional 
consequences of heliotropic abilities that 
relate to plant performance and are of 
significant adaptive value. Both estab- 
lishment and survival of drought stress 
are enhanced by solar tracking. Devel- 
oping seedlings (with two to four leaves) 
of some winter and summer desert annu- 
al species whose leaves do not track the 
sun show daily stem movements similar 
to solar tracking (24). Such a response 
would increase incident photosynthetic 
quantum flux and enhance productivity. 
If this phenomenon also occurs in seed- 
lings of crop species, it could be quite 
important in seedling establishment. 

In response to drought, a number of 
solar tracking species show para- 
heliotropism, the active sun avoidance 
response in which the leaf blade is ori- 
ented parallel to the sun's rays (2, 26, 27, 
34, 39). The consequence of this move- 
ment is that during periods of drought 
stress, leaves minimize absorption of so- 
lar radiation through the day rather than 
maximizing it (Fig. 4). Leaves with para- 
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heliotropic capabilities seem able to rap- 
idly change or reverse the cosine of in- 
cidence between 0 and 1, depending on 
the degree of plant-water stress (26, 27, 
34). Paraheliotropic movement reduces 
heat load on the leaf and decreases leaf 
temperature and transpiration rate (26, 
27, 40). Paraheliotropism should be of 
tremendous adaptive value in allowing 
plants to maintain favorable water rela- 
tions and avoid thermal damage during 
brief, intermittent periods of drought. 
Another possible benefit of parahe- 
liotropism may be an enhanced water 
use efficiency (the ratio of photosynthe- 
sis to transpiration). This aspect of para- 
heliotropism has apparently not been ex- 
amined. Sun avoidance responses in wa- 
ter-stressed plants are known to occur in 
a few crop species (27, 34, 39, 40) and in 
desert annuals (24, 26, 41), but the extent 
and distribution of paraheliotropism is 
poorly understood. 

As demands on agriculture increase, it 
will become necessary to increase the ef- 
ficiency of food production and to extend 
agricultural activity onto arid lands. To 
grow crop plants successfully on arid 
lands, we must know what physiological 
and morphological traits to incorporate 
in them. Native annual plants of arid 
lands should possess the adaptations 
needed to produce the most effective 
photosynthetic systems and to mature 
quickly before the onset of drought. He- 
liotropic leaf movements occur frequent- 
ly in desert plants and may be one of 
these desired traits. Thus, studies of this 
phenomenon and of native plants may be 
of considerable benefit to agriculture. 
Diaheliotropic and paraheliotropic leaf 
movements, which appear to be inde- 
pendent of both photosynthetic pathway 
and taxonomic limitations, occur widely 
in desert annuals, crop weeds, and agri- 
cultural species, suggesting that selec- 
tion for these traits might well be fea- 
sible. The capacity of diaheliotropism 
and paraheiiotropism to enhance plant 
productivity during periods of water 

availability and to enhance survival dur- 
ing intermittent periods of drought may 
be significant for increasing agricultural 
productivity on arid lands. 
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