
duce cytoskeletal changes in the pho- 
toreceptor cells. Indeed, preliminary ex- 
periments in which we used microtubule 
and microfilament inhibitors indicate 
that the circadian rhythm in retinal sensi- 
tivity requires the integrity of cyto- 
skeletal structures (12). The regulation of 
cell motility may therefore play an im- 
portant role in determining the response 
characteristics of this sensory system. 

In addition to the daily morphological 
changes described here, the photorecep- 
tors break down and rebuild the rhab- 
dom structure at the first light of day. 
Such dynamic mechanical effects are not 
unique to Limulus photoreceptors, how- 
ever. The photosensitive membranes of 
other invertebrate and vertebrate pho- 
toreceptors are periodically broken 
down and renewed (13), although the 
mechanisms may differ from those in 
Limulus (3). Other mechanical effects in 
the retina include migration of pigment 
granules (14), movement of rod and cone 
outer segments (15), and changes in the 
synaptic structure (16). These mechani- 
cal effects, controlled by either light or 
an endogenous circadian clock, appear 
to adapt the retina to its photic environ- 
ment. Thus, in addition to developing 
neural and biochemical mechanisms of 
adaptation (17), many retinas have 
evolved mechanical processes for con- 
trolling visual sensitivity. 
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Classical Conditioning: Induction of Luteinizing Hormone 

and Testosterone Secretion in Anticipation of Sexual Activity 

Abstract. A classical conditioning paradigm was used to demonstrate that male 
rats can learn to secrete luteinizing hormone and testosterone in anticipation of 
sexual activity. Sexually naive males were exposed to a neutral stimulus and then to 
a sexually receptive female once daily. After exposure to the paired stimuli for 14 
trials, the neutral stimulus was as effective as the female in triggering luteinizing hor- 
mone and testosterone secretion. These findings provide two novel perspectives on 
the control of reproductive hormone secretion in male rats: (i) environmental cues, 
which males learn to associate with sexual activity, induce the secretion of hormones 
that regulate pituitary-testis function, and (ii) classical conditioning may be used as 
a noninvasive method to evoke functional alterations in the secretion of luteinizing 
hormone and presumably the neuroendocrine pathways that mediate its release. 
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Short-term exposure of males to fe- 
males evokes temporary elevations in 
the systemic concentration of testoste- 
rone in numerous male mammals (1, 2). 
These findings have attracted wide- 
spread investigative interest because tes- 
tosterone supports certain structural and 
functional aspects of the male reproduc- 
tive system and plays a pivotal role in the 
expression of male sexual behavior (3, 
4). Investigation of the endocrine basis 
for female-induced increments in circu- 
lating testosterone titers has focused on 
the secretion of luteinizing hormone (LH) 
since this pituitary gonadotropin is the 
primary hormone regulating the produc- 
tion of testicular steroids (5). Unex- 
pectedly, the outcome of such investiga- 
tions is equivocal: some studies have 
demonstrated that LH secretion is ele- 
vated after exposing males to females (6), 
but others have failed to detect altera- 
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tions in LH release despite profound in- 
crements in blood testosterone levels (7). 
The controversy surrounding LH-medi- 
ated testicular endocrine responses may 
be due to the lack of conclusive infor- 
mation about stimuli that trigger LH re- 
lease. Indeed, neither the effects of pre- 
vious sexual experience nor the relative 
functional importance of visual, olfactory, 
auditory, and tactile cues are known in 
detail for any mammalian species. 

Given the ambiguity surrounding the 
nature of the provocative stimulus, and 
the suggestion, based on indirect evi- 
dence, that the mere anticipation of 
coitus stimulates testosterone secretion 
in human and rat males (8), we hypothe- 
sized that the stimulus that evokes LH 
secretion during sexual encounters need 
not originate with a female. Rather, LH 
secretion could be elicited by ambient 
cues that males learn to associate with a 
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female during repeated sexual encoun- 
ters. Our evidence affirms this hypothe- 
sis and unequivocally demonstrates that 
a classically conditioned stimulus can 
evoke the secretion of hormones from 
the pituitary gland and testis as ef- 
fectively as a sexually receptive female. 

We studied mature Sprague-Dawley 
male rats in two experiments. In experi- 
ment 1, we determined that the secretion 
of LH could be altered by a classically 
conditioned stimulus. We paired a neu- 
tral conditioned stimulus (CS) with an 
unconditioned stimulus (US) known to 
trigger LH release. The CS consisted of 
placing a male in a cage containing va- 
pors of methyl salicylate for 7 minutes, 
and the US consisted of placing a male in 
another cage with a sexually receptive 
female for 15 minutes (9). Males were as- 
signed randomly to one of five treat- 
ments: CS followed immediately by US 
(CS-US), CS alone (CS), CS followed by 
a 6-hour delay before exposure to the US 
(CS/US), US alone (US), or removal 
from the home cage and being handled 
for 30 seconds (H). Males were exposed 
to these treatments once daily for 14 con- 
secutive days at a randomly selected 
time between 1 and 7 p.m. (10). On day 
15, males in the CS-US and CS/US 
groups were exposed to the CS exclu- 
sively, while those assigned to groups 
CS, US, and H were exposed to the CS, 
US, and handled, respectively. Blood 
was collected by decapitation 7 minutes 
after exposure to the indicated stimuli. 
Males in the US group were killed 7 min- 
utes after being exposed to a female, in- 
stead of 15 minutes, to collect their blood 
at the same time relative to stimulus on- 
set as the other groups. The order in 
which the animals were killed was alter- 
nated among and randomized within 
groups. The concentration of immuno- 
reactive LH was determined according 
to a procedure previously validated for 
use with rat blood serum (11). Treatment 
effects were evaluated by analysis of var- 
iance and group means compared by the 
Newman-Keuls procedure (12). 

Exposure to the CS significantly 
(P < .05) elevated serum LH titers in 
CS-US males (Fig. IA). The conditioned 
elevation in LH was similar in magnitude 
to that achieved by exposing US males 
to sexually receptive females. In con- 
trast, neither daily exposure to the CS 
alone nor daily handling enhanced LH 
secretion in rats exposed to the CS and 
H treatments. Insertion of a 6-hour delay 
between exposure to the CS and US dur- 
ing training precluded the formation of a 
learned association between the two 
stimuli, as judged by the failure of CS/ 
US males to discharge LH in response to 
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Fig. 1. Concentrations of immunoreactive LH 
(reference preparation NIAMDD-rat-LH-RP- 
1) (A) and testosterone (B) in the blood serum 
of male rats. Each value represents the mean 
+ standard error of 10 to 12 rats. 

the CS. This finding provides additional 
evidence that the stimulating properties 
of the CS depended on the experimental 
contingency arranged between the CS 
and US (13). 

We performed experiment 2 to estab- 
lish that the conditioned rise in LH se- 
cretion would cause a conditioned eleva- 
tion in systemic testosterone titers. Ex- 
periment 2 was similar to experiment 1 
except that blood was collected 45 min- 
utes, rather than 7 minutes, after males 
were exposed to the indicated stimuli 
(14). The delay in obtaining blood sam- 
ples coincided with the time lag between 
the female-elicited LH surge and in- 
creases in systemic testosterone concen- 
trations shown in a preliminary study. 
The CS-US males exposed to the CS 
alone on day 15 showed a significant con- 
ditioned elevation in serum testosterone 
levels compared with males in the CS, 
CS/US, and H treatment groups (P 
< .05) (Fig. IB). As in experiment 1, the 
conditioned endocrine response of the 
CS-US group was indistinguishable from 
the unconditioned response of the US 
group to female exposure. 

To our knowledge, these results pro- 
vide the first direct evidence that the se- 
cretion of a hormone from the anterior 
pituitary gland and testis can be altered 
systematically by conditioned stimuli. 
This finding has functional and investiga- 
tive ramifications for the hormonal regu- 
lation of male reproduction. 

The functional significance of the con- 
ditioned change in LH secretion lies 
principally in the unequivocal demon- 
stration that environmental cues can ac- 
tivate the pituitary-testis axis in a way 

that mimics, in every respect, the activa- 
tion achieved by exposure to a female. 
Thus, pericopulatory endocrine re- 
sponses need not depend on specific 
cues emanating from a female, but can 
be evoked by nonspecific environmental 
stimuli that a male learns to associate 
with a female. These findings may ex- 
plain the failure of earlier studies, includ- 
ing those on human males, to establish a 
cause-effect relationship between female 
exposure or sexual stimulation and the 
secretion of LH, testosterone, or both 
(7). Pericopulatory endocrine responses 
may have gone undetected in previous 
experiments with sexually experienced 
males because the males learned to re- 
spond to classically conditioned stimuli 
while obtaining sexual experience. Un- 
der such circumstances, anticipatory en- 
docrine responses could occur well be- 
fore the overt behavioral events used to 
time the collection of blood samples and 
thus obscure the temporal relationship 
between LH and testosterone secretion 
since both hormones are rapidly metabo- 
lized from the circulatory system of rats 
and other mammals (15). 

The activational influence of the con- 
ditioned stimulus probably occurred at 
the level of brain control of LH releasing 
hormone since this neural hormone di- 
rects the secretion of LH from the ante- 
rior pituitary gland (16). Conditioned 
changes in LH secretion probably reflect 
a new functional interaction between as- 
sociation areas of the central nervous 
system and neuroendocrine pathways 
that control pituitary LH release. Thus, 
in addition to the functional importance 
of the results, our findings illustrate a 
powerful investigative method for study- 
ing the relationship between secretory 
events at the level of the brain, pituitary, 
and gonad, since the classical condi- 
tioning paradigm allows an investigator 
to exploit noninvasive measures to ma- 
nipulate the secretion of hormones. This 
technique may be of value in studying 
other neuroendocrine systems as well, 
since indirect evidence hints that the se- 
cretion of adrenocorticotropic hormone 
and oxytocin may be influenced by clas- 
sically conditioned stimuli (17). 

Endocrine responses to conditioned 
stimuli may have an important activa- 
tional role in shaping a male's sub- 
sequent mating behavior by provoking 
sexual arousal. Indeed, experimental 
elevations in LH releasing hormone and 
testosterone independently stimulate 
several aspects of reproductive behavior 
in male rats (18), but it is not known 
whether these hormones modify general 
arousal or induce sexual arousal specifi- 
cally. Stimuli that induce heightened 
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general arousal, whether through hor- 
monal or neural pathways, facilitate sex- 
ual behavior in male rats by reducing the 
number of intromissions and time re- 
quired for ejaculation (19). Anticipatory 
endocrine responses, which contribute 
to general arousal, may prepare the male 
for sexual encounters and therefore have 
considerable adaptive value, especially 
for prey species, by ensuring that a male 
is adequately aroused to mate effectively 
and quickly (20). In addition to behavior- 
al effects, conditioned systemic eleva- 
tions in testosterone may participate in 
the regulation of androgen-dependent 
functions at several loci, including the 
accessory reproductive structures (21). 
Thus, anticipatory endocrine responses 
to conditioned stimuli may be an impor- 
tant functional antecedent of sexual be- 
havior and thereby contribute signifi- 
cantly to the regulation of reproductive 
behavior and certain physiological as- 
pects of pituitary-testis function. 
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general arousal, whether through hor- 
monal or neural pathways, facilitate sex- 
ual behavior in male rats by reducing the 
number of intromissions and time re- 
quired for ejaculation (19). Anticipatory 
endocrine responses, which contribute 
to general arousal, may prepare the male 
for sexual encounters and therefore have 
considerable adaptive value, especially 
for prey species, by ensuring that a male 
is adequately aroused to mate effectively 
and quickly (20). In addition to behavior- 
al effects, conditioned systemic eleva- 
tions in testosterone may participate in 
the regulation of androgen-dependent 
functions at several loci, including the 
accessory reproductive structures (21). 
Thus, anticipatory endocrine responses 
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adaptively. 

In recent years, feeding has been 
viewed as a behavior molded by natural 
selection into an optimal state (1). In 
general, optimal foraging theory has 
taken the maximization of the net rate of 
energy intake to be the appropriate goal 
for foragers (2). An important assump- 
tion of this view is that other factors that 
can affect an organism's fitness do not af- 
fect the optimal foraging strategy. Con- 
siderable evidence suggests, however, 
that at least one such factor, the risk of 
being eaten while feeding, is important in 
altering the behavior of foragers (3). In 
particular, either foragers alter their be- 
havior in a way that reduces the risk of 
predation (4) or alterations are greater in 
response to greater risks of predation (5). 
If the demands of maximizing feeding 
rate and minimizing the risk of predation 
conflict (for example, if a forager's pred- 
ators and prey are found in the same 
place at the same time), foragers must 
choose a strategy that is an adaptive (6) 
compromise between these two de- 
mands. I attempted to quantify relative 
fitness in order to examine the hypothe- 
sis that feeding behavior represents such 
an adaptive compromise. 

I studied the behavior of an aquatic in- 
sect, Notonecta hoffmanni, which is 
commonly found in stream pools and 
ponds where it feeds on both aquatic 
prey (such as mosquito larvae) and ter- 
restrial prey trapped on the water's sur- 
face (such as adult flies). In the absence 
of predators, all size classes of N. hoff- 
manni seem to prefer similar sorts of 
prey and microhabitats (7). In addition, 
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the main predators on (and perhaps the 
main cause of death of) young N. hoff- 
manni are larger conspecifics (7). Thus, 
juvenile N. hoffmanni are commonly 
placed in a situation in which the de- 
mands of feeding and avoiding predators 
conflict. To clarify my terms, predators 
(adult N. hoffmanni) eat foragers (young 
N. hoffmanni) and both eat prey (adult 
flies). 

I conducted experiments in a chamber 
with a controlled environment at 24?C 
under a regime of 12 hours light and 12 
hours dark. Experimental tubs (38 by 56 
cm filled to a depth of 13 cm) were di- 
vided into a central region and an edge 
region through the use of a wooden 
frame (28 by 46 by 15 cm). The frame 
rose above the water's surface and con- 
strained surface prey (a strain of wing- 
less adult fruit flies, Drosophila melano- 
gaster) to one of the two regions. The 
sides of the frame were either covered 
with fiber glass window screening, there- 
by restricting notonectids (both foragers 
and predators) to one region or the other, 
or left open, allowing notonectids to 
move freely between the two regions. 

I experimentally created a conflict sit- 
uation in which the central region (HH) 
had high prey density (0.11 fly per square 
centimeter) but high risk of predation 
(three adult notonectids), and the edge re- 
gion (LL) had low prey density (0.03 fly 
per square centimeter) but low risk of 
predation (no adult notonectids). In ex- 
periment 1, I assessed the relative fit- 
nesses associated with time spent entire- 
ly in one region or the other by con- 
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tors while feeding. In an experimental conflict situation, it was possible to evaluate 
the relative fitnesses associated with the available choices and to compare the ob- 
served behaviors with predictions derived from fitness considerations. A backswim- 
mer, Notonecta hoffmanni, was capable of balancing these two conflicting factors 
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