
out of the tree, or both. Snake alarms 
were more likely to cause subjects to 
look down (9). The monkeys responded 
as though each type of alarm call desig- 
nated different external objects or 
events. 

This view of vervet alarm calls as rudi- 
mentary semantic signals contrasts with 
some earlier interpretations, which re- 
gard vervets' alarms, like other forms of 
animal communication, as manifesta- 
tions of different levels of arousal that 
lack clearly defined external referents 
(10). If this were the case, responses to 
alarms should differ in relation to call 
features that mirror arousal levels, such 
as call length or amplitude. Our results 
indicated that variation in call length and 
equatici of amplitude, as well as varia- 
tion in the "arousability" of individuals 
as reflected by age or sex of alarmists, 
failed to blur distinctions among major 
response categories. Variation in the 
acoustical structure of different call 
types was the only feature both neces- 
sary and sufficient to explain response 
differences (11). 

By giving alarm calls to some species 
but not to others, and by giving acousti- 
cally distinct alarms to different preda- 
tors, vervet monkeys effectively cate- 
gorized other species. More than 100 
species of mammals, birds, and reptiles 
were seen regularly by the monkeys 
without eliciting alarm calls. When giv- 
ing alarms, adults were most selective. 
Adults gave leopard alarms primarily to 
leopards, eagle alarms primarily to mar- 
tial eagles, snake alarms to pythons, and 
baboon alarms to baboons. Sixty-four 
percent of all well-documented adult 
alarm calls (N = 122) were given to 
these four species. In contrast with 
adults, infants gave alarms to a much 
wider variety of species (two-tailed 
Mann-Whitney U tests, P < .05), and 
were more likely than adults to give 
alarms to things that posed no danger to 
them such as warthogs, pigeons, and fall- 
ing leaves (12). Even for infants, how- 
ever, the relation between type of alarm 
call and the stimulus that elicited it was 
not arbitrary. Infants gave leopard 
alarms primarily to terrestrial mammals, 
eagle alarms to birds, and snake alarms 
to snakes or long thin objects. Age-re- 
lated differences in alarm-calling behav- 
ior (Fig. 1) indicate that while infants dis- 
tinguished between relatively general 
predator classes (for example, between a 
terrestrial mammal and a flying bird), 
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fants grow older they sharpen the associ- 
ation between predator species and the 
type of alarm call. They behave as 
though their ability to classify other or- 
ganisms improves with age and experi- 
ence. The precise nature of the process 
of perceptual categorization that is im- 
plied and the possible roles of individual 
experience and adult tutelage in this de- 
velopment remain to be determined. 
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Long-iatency potentials that are de- 
pendent on the cognitive context in 
which a stimulus occurs, but are inde- 
pendent of the sensory characteristics of 
the stimulus and overt motor response 
required by the task, can be recorded 
from the human scalp. These potentials 
(N2, P3, and slow wave) are thus termed 
endogenous (1). Typically, they occur 
when the subject is actively attending to 
the stimuli, and the evoking event is in- 
frequent (2, 3). Reliable changes in en- 
dogenous potentials occur in relation to 
cognitive variables (4) and neurological 
status, for example, in dementia and re- 
tardation (5). The functional inter- 
pretation of these changes has been lim- 
ited because the location and nature of 
neural activity within the human brain 
during endogenous potentials is un- 
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8. Sound intensities were measured on a General 
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known (6). Here we report that large 
field-potential and unit responses are 
evoked in the human hippocampal for- 
mation and amygdala by infrequent, at- 
tended events. 

Recordings were obtained from six 
adults of normal intelligence and person- 
ality with bilateral electrodes implanted 
in the hippocampus (N = 20), hippocam- 
pal gyrus (N = 13), and amygdala 
(N = 8) to locate epileptic foci for pos- 
sible surgical removal (7). A simple 
method used to evoke endogenous scalp 
potentials is to present tone bursts of two 
different fixed pitches at random inter- 
vals. The subject's task is to count si- 
lently the number of "rare" tones (20 
percent of the total presented) randomly 
interspersed among the "frequent" 
tones (3). We found that during this task, 
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large potentials may be evoked by rare 
and by frequent tones in the hippocam- 
pal formation and amygdala (Fig. 1A). 
The limbic potentials were always larger 
in response to rare tones, even though 
the rare and frequent tones were of iden- 
tical intensity and duration (8). Similar 
potentials were evoked by rare visual 
stimuli (S) flashed on a screen for 10 
msec, randomly mixed at 2-second inter- 
vals with frequent visual stimuli (M) of 
equal luminance, contour, and contrast 
(Fig. lB). The potentials generated in the 
auditory task were greatly attenuated if 
the same stimuli were presented while 
the subject was reading a book and ex- 
plicitly instructed to ignore the tones 
(Fig. 2). Thus, long-latency limbic poten- 

tials are enhanced when the stimulus is 
attended and rare, but do not depend on 
the sensory modality or quality of the 
stimulus (9). 

These endogenous limbic potentials 
(ELP's) presumably reflect widespread 
extracellular current flows generated by 
simultaneously activated synapses with 
a restricted spatial distribution (6). Char- 
acteristics of the ELP's suggest that they 
were recorded near the activated syn- 
apses where current flows are maximal 
and change direction over short dis- 
tances. The amplitude of the ELP's var- 
ied with the subject and the electrode 
site, but was frequently between 100 and 
200 ,V (Fig. 1A). In 7 of 12 hippocam- 
pal, 4 of 7 hippocampal gyrus, and 4 of 6 

amygdala sites, amplitudes greater than 
40 gV were observed (10). This com- 
pares with a maximum amplitude for en- 
dogenous potentials of about 15 AV at 
the scalp and 25 AtV in the cortex or 
hemispheric white matter (11). The vari- 
ability in the amplitude of the ELP's is 
explained by their steep voltage gradi- 
ents, demonstrated by their presence in 
bipolar recordings between electrode 
tips separated by as little as 1.0 mm, and 
by their varying polarities when record- 
ings were made from nearby electrodes 
relative to an inactive reference (Fig. 1, 
A and B). Clear ELP's of both positive 
and negative polarities were recorded by 
electrodes directed toward each limbic 
area. Apparently this occurred because 
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H COG -J" I . / m-n Fig. I (left). (A) Characteristic potentials 
~n:~J!~ irI^^ \\ J I evoked in limbic sites during an auditory 

I: I \\J f^r / paradigm (3). The largest negative potential 
I I K '-" \ I was recorded in the hippocampus (HC) after 

rare tone bursts. Phase reversal occurred 9 
HC -/^\\ '''? '''? /,^/^^^\^ l^ \ V HO mm posteromedial in the hippocampal gyrus 

(HCG) and 26 mm anterior in the amygdala 
\ .j / f~ . L~ r~ (Am). The vertical dotted lines, 265 and 430 

msec after stimulus onset, indicate the ap- 
proximate onsets of the P3 and slow wave 

200]0 . \/ / tt800 t [I rr L(SW) at the vertex (Cz). In all graphs, the thin 
-200 0 +1800 lines represent the average of 35 to 45 re- 

imsec U fJ 1F -0uJ L lOT? -f r units sponses evoked by rare stimuli, and the thick 
lines the averages to 155 to 165 frequent 

:?i ~~~~~ :'~ ~~~ .-~ ~ -stimuli (15). Scale: 100 uV depth; 25 gV scalp. 
0 msec 800 (B) Neural potentials evoked by rare and fre- 

quent stimuli in a visual task. Large field potentials were recorded from the hippocampal microelectrode regardless of whether it was referenced 
to the (inactive) tip of the nose (m-n), to an amygdala microelectrode 26 mm anterior (m-Am), or to a hippocampal macroelectrode 5 mm lateral 
(m-M) to the hippocampal microelectrode. Comparison of the field potential recorded by this macroelectrode referenced to the nose (M-n) with 
that recorded by the microelectrode 5 mm medial (m-n) indicates that relatively small changes in recording site may produce large changes in 
response morphology and amplitude. The units recorded by this microelectrode show a large increase in average firing rate (units) at the time 
when the simultaneously recorded potential to rare stimuli has a negative slope, and when a P3 is present at Cz (16). The recordings were made 
from the same electrode in the same subject (CNP 118) as those in (A), but 12 days later. Although morphologies may vary with the task, the 
polarity and the relative amplitudes of the rare and frequent limbic potentials at one site as compared with another appear to remain constant. 
The vertical line represents an average rate of seven spikes per second (units) and an average amplitude of 25 ,V (Cz) or 50 /V (all other 
traces). Fig. 2 (right). Endogenous potentials recorded from the vertex (Cz) and hippocampus (HC) were greatly attenuated if the tones 
were ignored while the subject was reading. The right HC (RHC) recordings from this subject (CNP 120) illustrate potentials of opposite 
polarity evoked in the same electrode by rare versus frequent attended tones. In other electrodes they may evoke potentials of the same polarity, 
but of greatly varying relative amplitude (Fig. 1A); this suggests neural generators that are at least partly independent of one another. The left and 
right HC (RHC and LHC) electrodes, although directed toward symmetrical sites, recorded potentials of opposite polarity. In this figure only, 
one-third of the averaged waveform for Fpz (a midline forehead site) was subtracted from the Cz waveform in order to compensate for con- 
tamination of this lead by eye movement potentials. Scale: 40 uV depth; 10 ,V scalp. 
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they fortuitously terminated on different 
sides of the reversal points in each struc- 
ture. In addition to phase reversal within 
each anatomic area, there were con- 
sistent differences in polarity between 
areas. Although ELP's greater than 40 
,uV were usually negative in the hippo- 
campus (six of seven cases), they were 
positive in all cases in the hippocampal 
gyrus and amygdala (10). In contrast to 
these endogenous potentials recorded in 
the limbic system, those recorded at dif- 
ferent scalp sites (12) or with successive 
contacts of probes passing through the 
parieto-occipital or frontocentral associ- 
ation cortices to the deep hemispheric 
white matter (11) do not show steep volt- 
age gradients or phase reversal. 

Direct evidence that current flows gen- 
erated by local synapses are present in 
the medial temporal lobe during produc- 
tion of ELP's was obtained from con- 
current recordings of limbic unit activity. 
Behavioral paradigms that evoked 
ELP's also evoked changes in the firing 
rates of neurons in the amygdala (three 
of four electrodes), hippocampus (five of 
five electrodes), and hippocampal gyrus 
(five of five electrodes). On occasion, 
when the field potentials and action po- 
tentials recorded simultaneously by the 
same electrode both changed in response 
to the stimuli, these changes were corre- 
lated, in that they occurred at the same 
latency and varied in a parallel manner 
across conditions (Fig. lB). The neural 
characteristics that were correlated were 
different electrodes: either an increase or 
a decrease in firing rate might be associ- 
ated with either the slope or amplitude of 
the ELP. Such variation may be ex- 
pected, owing to the phase reversals and 
differing cell populations within the re- 
corded structures. Since the membrane 
capacitance of neural tissue shunts high- 
frequency signals, the changes in firing 
rate must occur in neurons directly adja- 
cent to the recording electrodes. The ex- 
traordinary lamination of hippocampal 
synaptic input makes it unlikely that the 
synaptic current flows causing these 
changes in firing rate would cancel. 
Rather, as when hippocampal synaptic 
input is activated in animals (13), the 
synaptic current flows probably sum- 
mate to produce the large amplitudes, 
steep voltage gradients, and local phase 
reversals characteristic of ELP's. 

Our results do not indicate whether 
the scalp and limbic endogenous poten- 
tials are simply correlated, or whether 
some component of the scalp potentials 
is, in fact, a passively volume-conducted 
reflection of the much larger limbic- 
generated potentials (14). Their correla- 
tion, however, may be adequate to infer 
14 NOVEMBER 1980 

specific human limbic neural activity than by the electrodes, and was either 1 to 100 
Hz or 0.3 to 5000 Hz (half amplitude) in different 

during the cognitive, neurological, and recordings. Informed consent was obtained in 
developmental conditions that evoke or accordance with procedures approved by the Human Subject Protection Committee of the 
affect endogenous potentials recorded University of California, Los Angeles School of 
from the scalp. Medicine. 
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