
otides by independent regulatory mecha- 
nisms (19). 

Six-day-old rats were chosen as exper- 
imental animals in this study to include 
potential effects of air ions on neural de- 
velopment. There appears to be a sero- 
tonin-dependent adenylate cyclase sys- 
tem in very young animals, which de- 
creases in sensitivity with age (20). Our 
results with serotonin and cyclic AMP 
may be due to this coupling. It is con- 
ceivable, however, that negative air ions 
could have shifted the apparent develop- 
mental stage of the rats in this study by a 
primary effect on the concentration of 
some hormone, such as prolactin, sex 
hormone, or serotonin-derived melato- 
nin. A direct effect of small air ions on 
prolactin levels was proposed by Oli- 
vereau in his study of the effects of air 
ions on the spontaneous movements of 
amphibian larvae (21). A direct hormonal 
effect of this kind in our system may 
have caused the increased cortical 
weights and decreased cortical levels of 
a second-messenger cyclic AMP report- 
ed here. Comparison of effects of nega- 
tive and positive ions and different envi- 
ronments on various transmitters should 
show how the responses are related to 
the developmental stage of the animal. 
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The nigrostriatal dopaminergic system 
has been studied intensively because of 
its participation in the pathogenesis of 
Parkinson's disease (1) and its role in 
mediating the neurological side effects of 
antipsychotic drugs (2). Mapping of this 
system by fluorescence histochemical 
techniques has identified the location of 
these cells and made it possible to record 
extracellularly in vivo from the area in 
which these cells are contained. Dopa- 
mine-containing neurons of the sub- 
stantia nigra exist in a thin band on its 
dorsal edge (3) and are intermixed with 
neurons that do not contain dopamine (4, 
5). Hence, to date, electrophysiological 
identification of these cells has depended 
on indirect criteria (6). Extracellular ad- 
ministration of L-dopa followed by pro- 
cessing of the brain slices for cate- 
cholamine fluorescence (7) was one of 
these criteria, because only the dopa- 
mine-containing neurons in this brain re- 
gion contain aromatic amino acid decar- 
boxylase (the enzyme necessary for con- 
version of L-dopa to dopamine) and only 
the dopamine reacts with formaldehyde 
vapor or glyoxylic acid to form fluores- 
cent compounds. Thus, the increased 
fluorescence of these neurons after L- 
dopa iontophoresis (resulting from its 
uptake and conversion to dopamine) 
demonstrated conclusively that the re- 
cording electrode was in the vicinity of 
these neurons. However, because the L- 
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dopa was administered extracellularly, it 
did not allow identification of the specific 
cell from which the recording was made. 

Extracellular recordings of these in- 
directly identified dopamine-containing 
neurons have been useful in studying the 
modes of action of various pharmacolog- 
ical agents, such as the antipsychotic 
drugs and dopamine agonists (for ex- 
ample, d- and I-amphetamine and apo- 
morphine), as well as in studying some 
aspects of their neurophysiological func- 
tioning (8, 9). However, the exact mem- 
brane mechanisms underlying dopami- 
nergic cell functioning and the effects of 
drugs on them cannot be inferred from 
the results of these studies; only intra- 
cellular recording can demonstrate the 
precise synaptic and ionic mechanisms. 
We report here intracellular recordings 
from dopamine-containing neurons of 
the rat substantia nigra. The cells were 
positively identified as dopaminergic by 
intracellular iontophoresis of L-dopa at 
the end of the recording and subsequent 
processing of the brain for fluorescence 
histochemistry. 

Rats were used as experimental sub- 
jects (10). Intracellular recordings (11) 
were made from presumed dopamine- 
containing neurons of the zona compacta 
region of the substantia nigra (N = 50). 
The cells were tentatively identified be- 
fore electrode penetration by their extra- 
cellular firing pattern, waveform, rate of 
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Nigral Dopamine Neurons: Intracellular Recording and 

Identification with L-Dopa Injection and Histofluorescence 

Abstract. Intracellular recordings in vivo were obtained from dopamine-contain- 
ing neurons of the rat substantia nigra. These neurons were identified elec- 
trophysiologically by antidromic activation and histochemically by L-dopa injection 
and subsequent fluorescence histochemistry. Extracellular spikes and antidromic 
conduction velocity of the neurons were identical to those previously described for 
putative dopaminergic neurons. Spontaneous intracellular fast potentials, slow de- 
polarizations during burst firing, and spike prepotentials were observed. 
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firing, and location (5, 7). Only impaled 
cells with a stable resting potential great- 
er than -55 mV, spike heights greater 
than 50 mV, and firing rates below 8 Hz 
were judged sufficiently stable for elec- 
trophysiological recording. Stable rest- 
ing potentials generally ranged between 
-60 and -65 mV, although these cells 
tended to hyperpolarize with extended 
recording times (more than 20 minutes). 
The L-dopa was injected into cells with 
5-nA ramp depolarizing pulses (approxi- 
mately 3 seconds on, 5 seconds off) for 5 
minutes or longer. Only cells that fired 
spikes and still exhibited resting poten- 
tials greater than -45 mV during the en- 
tire injection procedure demonstrated 
evidence of increased fluorescence, 
probably a result of diffusion of dopa- 
mine from seriously injured cells. After 
injection, rats were allowed to survive 
for 10 to 30 minutes before decapitation, 
and the brains were processed histo- 
chemically with glyoxylic acid for fluo- 
rescence microscopy (12). Only one cell 
per animal was injected with L-dopa. 
Injected dopaminergic cells (N = 12) 
showed markedly increased fluores- 
cence compared to surrounding dopa- 
mine-containing neurons (an example is 
shown in Fig. 1). Four dopaminergic 
cells were injected with L-dopa and pro- 
cessed for fluorescence after antidromic 
activation. Injection of L-dopa into zona 
reticulata cells presumed to be non- 
dopaminergic did not result in glyoxylic 
acid-induced fluorescence. 

Antidromic activation of dopaminergic 
neurons recorded intracellularly was ob- 
tained by caudate stimulation-(13). Anti- 
dromic invasion was established by (i) 
constant latency, (ii) ability to follow up 
to 100-Hz stimulation without spike fail- 
ure, (iii) one spike elicited per stimulus, 
and (iv) collision of antidromic spikes 
with directly elicited spikes. A total of 15 
dopaminergic cells demonstrated anti- 
dromic activation, with an average la- 
tency of 11.9 ? 1.1 msec (mean + stan- 
dard error), which corresponds to an 
estimated conduction velocity of 0.54 
m/sec (Fig. 2C). This value is very 
close to that obtained previously for 
tentatively identified dopaminergic neu- 
rons (5, 14). In a number of cells 
(N = 10) antidromic activation elicited a 
small potential (15 to 30 mV) riding on an 
inhibitory postsynaptic potential (IPSP) 
which could be made to collide with a di- 
rectly elicited spike (Fig. 2D). This po- 
tential may correspond to the "initial 
segment" spike reported previously (5), 
with the full action potential possibly 
blocked by the IPSP in the soma. This 
IPSP probably results from orthodromic 
activation of a striatonigral inhibitory 
7 NOVEMBER 1980 

Fig. 1. Fluorescence micrograph of substantia 
nigra zona compacta. An intensely fluores- 
cent dopaminergic neuron (arrow) intra- 
cellularly injected with L-dopa is surrounded 
by noninjected dopaminergic cells that are 
less bright and have normal fluorescence. 
Scale bar, 50 um. ZC, zona compacta; ZR, 
zona reticulata. 

feedback pathway [presumably contain- 
ing y-aminobutyric acid (GABA)] im- 
pinging on the dopaminergic neuron (15). 
Indeed, they appear similar to those re- 
ported at the crayfish stretch receptor 
(16) when an antidromic spike invaded 
the soma during an IPSP. Thus, this 
small potential could result from (i) fail- 
ure of an action potential at the initial 

segment of the axon to invade the soma 
due to hyperpolarization or (ii) a shunt- 
ing of the action potential at the soma by 
the conductance increase associated 
with the IPSP. 

Spontaneous intracellular bursts and 
fast prepotentials were seen and appear 
similar to those recorded in hippocampal 
pyramidal cells (17). However, the 
bursts were noted only in dopaminergic 
neurons exhibiting a rather fast firing 
rate (in a more depolarized state), where- 
as in the hippocampus, depolarizing af- 
terpotentials are seen following single 
spikes and summate into a burst. Thus, a 
different mechanism may be involved. 
The extracellular dopaminergic cell ac- 
tion potential and burst (Fig. 2A), ob- 
tained from the cells identified in this re- 
port as dopaminergic, are similar to 
those described previously (5, 7). Thus, 
the initial assumptions concerning the 
neurochemical identity of these cells is 
confirmed. In a small number of dopami- 
nergic cells recorded intracellularly (N 
= 5), small (5 to 10 mV), fast potentials 
occurred spontaneously (Fig. 2B). In ad- 
dition, in one-fourth of the cells record- 
ed, a spike was observed to arise from 
a fast prepotential (Fig. 2B). Whether 

A A Fig. 2. Electrophysio- 
l L{ I , logical recordings 

(\ imuwiAIuUl , tNMtftAN IIfrom identified DA 
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inactivation of spike-generating mechanism. (Cl) Dopaminergic cells were antidromically acti- 
vated from the ipsilateral caudate nucleus (stimulus given at arrow). (C2) Collision of anti- 
dromic spike with directly elicited spike. The direct spike was elicited by an intracellular injec- 
tion of depolarizing current (at horizontal bar) sufficient to bring cell past threshold. (D1) Anti- 
dromic activation of an attenuated spike, riding on an IPSP. The IPSP was probably elicited 
orthodromically from stimulation of a striatonigral fast-conducting inhibitory pathway. (D2) 
Collision of this attenuated spike with directly elicited spike. 
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these potentials are generated at the 
same site or at different sites (for exam- 
ple, at the initial segment or dendrites) 
is still unknown. 

To our knowledge this represents the 
first report in which intracellular record- 
ings from neurons in the mammalian cen- 
tral nervous system have been obtained 
simultaneously with evidence for their 
neurochemical identity. It also repre- 
sents the first step in the intracellular 
characterization of brain monoamine 
neurons recorded in vivo. These tech- 
niques should make possible investiga- 
tions in much greater depth of various 
aspects of this neuronal system, for ex- 
ample, the function of autoreceptors (9, 
18), depolarization inactivation (19), 
burst firing (7), effects of afferent inputs 
on dopaminergic cell membrane proper- 
ties, and the mechanisms of action of 
dopamine agonists and antagonists. Data 
obtained from such studies may further 
our understanding of dopamine system 
function in both normal and pathological 
states. 

ANTHONY A. GRACE 
BENJAMIN S. BUNNEY 

Departments of Pharmacology 
and Psychiatry, Yale University 
School of Medicine, 
New Haven, Connecticut 06510 
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simultaneously with evidence for their 
neurochemical identity. It also repre- 
sents the first step in the intracellular 
characterization of brain monoamine 
neurons recorded in vivo. These tech- 
niques should make possible investiga- 
tions in much greater depth of various 
aspects of this neuronal system, for ex- 
ample, the function of autoreceptors (9, 
18), depolarization inactivation (19), 
burst firing (7), effects of afferent inputs 
on dopaminergic cell membrane proper- 
ties, and the mechanisms of action of 
dopamine agonists and antagonists. Data 
obtained from such studies may further 
our understanding of dopamine system 
function in both normal and pathological 
states. 
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Peptide structures normally exist in 
solution as an equilibrium mixture of 
conformers. Backbone conformational 
constraints are of interest as a means of 
limiting the number of conformations 
available to the peptide (1). Potential ad- 
vantages to be realized with the use of 
these restrictions in biologically active 
peptides include increasing the potency 
by stabilizing a biologically active con- 
former (2), decreasing degradation by 
eliminating metabolized conformers, and 
improving biological selectivity through 
elimination of bioactive conformers that 
give undesired biological responses (3). 
In addition, information can be obtained 
about the biologically active conforma- 
tion of the peptide at a specific receptor 
through the introduction of the con- 
formational constraint (4). 

Two basic types of conformational 
modifications have been used in analogs 
of biologically active peptides which 
place limits on the possible bioactive 
conformations. Noncovalent modifica- 
tions include D amino acids (5), N- 
methyl amino acids (6), and a-methyl 
amino acids (1). Most frequently applied 
and successful among these have been 
the D amino acids. Covalent modifica- 
tions forming cyclic and polycyclic pep- 
tides include as more common examples 
cyclic amino acids such as proline (7) 
and disulfide bridges (8) and cyclization 
through amide bonds (7), all of which are 
known to occur in nature. f3-Lactams ap- 
pear as naturally occurring modifications 
in the penicillins and cephalosporins and 
serve also as reactive agents (9). We 
have been exploring the use of larger ring 
(five-, six-, and seven-membered) lac- 
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tams as novel conformational modifica- 
tions in peptides (10) and report here a 
lactam-containing analog of luteinizing 
hormone-releasing hormone (LH-RH) 
more active than the parent hormone. 

Since the determination of the se- 
quence of LH-RH (<Glu-His-Trp-Ser- 
Tyr-Gly-Leu-Arg-Pro-Gly-NH2) (11), 
many analogs have been prepared (12). 
Because of its higher potency, one of the 
useful structural modifications is the sub- 
stitution of a D amino acid for the glycine 
residue in position 6 (13). For example, 
the D-Ala6 analog is 3.7 times as active as 
LH-RH itself. In contrast, the L-Ala6 an- 
alog has low potency. A second non- 
covalent constraint resulting from re- 
placement of Leu7 by N-methyl-Leu 
gave a further increase in activity (14). 
The enhanced biological activity of the 
D-Ala6-N-methyl-Leu7 analog is consist- 
ent with a /3-turn conformation for resi- 
dues 5 to 8 of LH-RH (5). An amino acid 
of the L configuration in position 6 
should destabilize this 8/-turn, which is 
the presumed reason for the low activity 
of such analogs. The presence of a /3-turn 
is predicted also by conformational ener- 
gy calculations (15). The theoretical cal- 
culations also predict a stabilization of 
this conformation in D-Ala6 analogs and 
a destabilization in L-Ala6 analogs (16). 

The proposed /-turn for LH-RH (15) 
is shown in Fig. 1, a. This case seemed 
ideally suited to the use of a lactam con- 
formational constraint because of the 
proximity of the pro-S hydrogen atom of 
Gly6 to the N"-hydrogen of Leu7. By re- 
placing these two hydrogens with 
methylene groups and connecting the 
newly introduced carbon atoms with a 
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Bioactive Conformation of Luteinizing Hormone-Releasing 
Hormone: Evidence from a Conformationally Constrained Analog 

Abstract. An analog of luteinizing hormone-releasing hormone containing a y- 
lactam as a conformational constraint has been prepared with the use of a novel 
cyclization of a methionine sulfonium salt. The analog is more active as a luteinizing 
hormone-releasing hormone agonist than the parent hormone, and provides evi- 
dence for a bioactive conformation containing a /3-turn. 
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