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anol (by weight) by analyzing a series of 
known solutions of ethanol in gasoline. 
Integration was done by digital comput- 
er. Water was determined by Fischer ti- 
tration (5). 

Addition of HSPAN to the two-phase 
mixtures of gasoline, ethanol, and water 
resulted in selective absorption of water 
with nearly complete solution of the eth- 
anol component into the gasoline phase 
(Table 1). Corn starch did not exhibit this 
selectivity. Because the HSPAN was not 
dry but contained 10 percent water, one 
should be able to reuse the polymer after 
air-drying it at room temperature and 
low relative humidity, and the energy re- 
quired to regenerate HSPAN would thus 
be negligible [HSPAN air-dries readily 
(3), and the resulting polymer remains 
highly absorbent]. As expected, residual 
water increased with the final ethanol 
content of the gasohol. Water was re- 
moved more efficiently when gasoline- 
ethanol-water mixtures were passed 
through a column of HSPAN. For ex- 
ample, water contents of 0.24 and 0.28 
percent (by weight) were found with eth- 
anol contents of 10.4 and 10.9 percent 
(by weight), respectively, and these wa- 
ter contents are within the tolerance limit 
for a 90:10 ethanol-gasoline blend. 

It apparently is not sufficient for 
HSPAN to merely absorb all of the lower 
aqueous ethanol phase; rather, enough 
HSPAN must be used so that the water 
present in the system is actually bound 
to the polymer by strong hydrogen 
bonds. The amount of polymer needed to 
dehydrate a particular system thus de- 
pends on the total water present and not 
on the degree of swelling or absorbency 
(6) of HSPAN in the ethanol-water mix- 
ture. Low-proof ethanol will require a 
large amount of HSPAN, even though 
much smaller amounts will absorb and 
solidify the aqueous ethanolic solution. 
Since the high-proof ethanol systems of 
Table 1 are essentially nonswelling me- 
dia for HSPAN, addition of sufficient 
polymer to absorb all of the aqueous eth- 
anol layer provides about the correct ra- 
tio of polymer to water to ensure its 
strong hydrogen bonding. 

The presence of the gasoline phase as 
an extractant for ethanol, as water is 
being hydrogen-bonded to HSPAN, is 
essential to the success of our method, 
since high-proof ethanol in the absence 
of gasoline was not completely dehy- 
drated by polymer. For example, when 
ethanol containing 23 percent (by 
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The water content of the effluent re- 
mained fairly constant until about the 
15th milliliter and then began to in- 
crease, as the column reached its capac- 
ity for water. 

GEORGE F. FANTA 
ROBERT C. BURR 

WILLIAM L. ORTON 
WILLIAM M. DOANE 

Northern Regional Research Center, 
Agricultural Research, Science and 
Education Administration, 
Department of Agriculture, 
Peoria, Illinois 61604 

The water content of the effluent re- 
mained fairly constant until about the 
15th milliliter and then began to in- 
crease, as the column reached its capac- 
ity for water. 

GEORGE F. FANTA 
ROBERT C. BURR 

WILLIAM L. ORTON 
WILLIAM M. DOANE 

Northern Regional Research Center, 
Agricultural Research, Science and 
Education Administration, 
Department of Agriculture, 
Peoria, Illinois 61604 

nicotinic cholinergic receptor. 

Nicotine is one of the most widely 
studied drugs. Its mechanism of action at 
the neuromuscular junction and at auto- 
nomic ganglia is well understood at both 
the molecular and the cellular levels (1). 
Nicotine also has many effects on the 
central nervous system: it is a primary 
reinforcer (2); it serves as a discrimina- 
tive stimulus (3); it has anti-nociceptive 
properties (4); and it stimulates vaso- 
pressin release (5). Although it is usually 
assumed that these actions of nicotine 
are mediated by nicotinic cholinergic re- 
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ceptors on central neurons, there is no 
direct evidence for this assumption. 
Blockade of these effects by mecamyl- 
amine or pempidine is not a sufficient cri- 
terion, since these compounds are poor 
blockers at the neuromuscular junction, 
and their ganglionic blocking properties 
are largely noncompetitive and pre- 
synaptic (6, 7). 

a-Bungarotoxin binds specifically to 
brain membranes, and its binding site 
shares ligand specificity and biochemical 
properties with the acetylcholine recep- 
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15 Fig. 1. Scatchard plot of (?)-[3H]nicotine 
binding to rat brain membranes. Male Simon- 
sen albino rats (Sprague-Dawley derived, Si- 
monsen Laboratories, Gilroy, California), 

E N weighing 250 to 350 g were killed by decapita- 
l 10 tion and the brain was removed. Whole brain 

co homogenate was prepared in ten volumes of 
o ice-cold buffer (Hepes, 50 mM; NaCl, 118 

\ \mM; KC1, 4.8 mM; CaC12, 2.5 mM; MgSO4, 
)O^~~ \ - ~~1.2 mM; and NaOH to pH 7.40) and centri- 

1 5 ? \N fuged at 17,500g for 30 minutes. The pellet 
o \ was suspended in 20 volumes of ice-cold 

m *\ glass-distilled water, allowed to lyse for 60 
minutes, and centrifuged as above. The mem- 

*?^^~ ~ brane pellet was then suspended in buffer and 
. , i." . centrifuged as above. The final pellet was sus- 

5 10 15 pended to a final concentration of 40 mg of 
[3H] (+)-Nicotine bound (fmole/mg) original tissue per milliliter of buffer; 0.5 ml of 

the membrane suspension was added to 0.5 ml 
of buffer containing (+)-[3H]nicotine at the appropriate concentration, in the absence or pres- 
ence of unlabeled (-)-nicotine at a 1.0 mM final concentration (each concentration in triplicate). 
Tubes were incubated for 40 minutes at 37?C, and then chilled on ice. After 20 minutes the 
mixture was diluted with 4.0 ml of ice-cold buffer, filtered through polylysine-soaked Whatman 
GFC filters, and washed with four 4.0-ml portions of cold buffer. To control for residual dis- 
placeable binding to filters, parallel tubes were incubated and chilled as above, but (+)- 
[3H]nicotine was not added until immediately before filtration. Radioactivity was determined by 
spectrometry in a dioxane-based liquid scintillation mixture at a counting efficiency of 43 per- 
cent. Binding not displaceable by 1.0 mM (-)-nicotine, and displaceable binding to filters have 
been subtracted; plotted data represent only displaceable binding to brain membranes. Units for 
bound ligand are femtomoles per milligram of original tissue and for bound/free are liters per 
milligram of original tissue. This experiment yielded the following parameter estimates: high- 
affinity site Kd = 28 nM, density = 3.2 fmole per milligram of original tissue; low-affinity site 
Kd = 0.46 pM, density = 10.4 fmole per milligram of original tissue. 
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