
sponse to higher water velocity per se, 
the flume's pump and filter system were 
used to vary the concentration of sus- 
pended particulate matter (Fig. 3). By 
the time approximately 40 percent of the 
particulates (by weight) was filtered 
out, most worms had withdrawn their 
tentacles into their tubes, When the ex- 
periment was repeated with the filter ele- 
ment removed from the recirculation 
system, the concentration of suspended 
particulate matter (and hence the partic- 
ulate flux) remained constant, as did the 
number of worms actively feeding. Thus 
it was not the operation of the pump and 
filter that inhibited feeding behavior, but 
the reduced particulate flux. 

It has been known for some time that 
certain benthic organisms, including 
some spionids, nereids, fabricine sabel- 
lids, and oweniids among the poly- 
chaetes (6), tellinids among the bivalves 
(16), and amphipods among the crusta- 
ceans (17) are capable of both suspen- 
sion and deposit feeding. The growing 
understanding of benthic boundary layer 
dynamics and rapidly improving flow 
measurement technology now permit an 
analysis of the factors influencing the 
preferred feeding mode. We suggest that 
animals capable of switching their feed- 
ing behavior typify environments of rap- 
idly varying flow characteristics. Rather 
than being a troublesome anomaly in tro- 
phic classifications (6), such animals 
form a distinctive indicator group of their 
own. 
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phic copulatory behavior of the rat. 

Because of the obvious sex differences 
in the behavior of vertebrates, one might 
expect to find differences in the central 
nervous system (CNS) of the two sexes. 
Raisman and Field (1) reported that in 
rats the "strial portion" of the preoptic 
area (POA) has more synapses from non- 
amygdaloid sources in females than in 
males. Other anatomical sex differences 
described in the nervous system include 
the number of autonomic preganglionic 
neurons in cats, and the dendritic field 
patterns in the POA of hamsters (2). Not- 
tebohm and Arnold (3) reported gross 
sexual dimorphism in the size of certain 
brain nuclei of song birds. These nuclei 
are larger in males and are known to play 
a role in the singing behavior which only 
males display. Gorski et al. (4) found a 
strikingly dimorphic nucleus in the rat 
POA which is larger in males than in fe- 
males. Because the last two dimor- 
phisms are easily detected, they provide 
convenient measures of the process of 
sexual differentiation of the brain, and 
therefore study of these systems may 
lead to a better understanding of the fac- 
tors critical to sexual differentiation of 
vertebrate behavior. We now report a 
prominent dimorphism in a motor nucle- 
us of the rat spinal cord, the neurons of 
which accumulate radioactivity after in- 
jections of tritiated androgens but not es- 
tradiol. This dimorphism is useful for 
studying sexual differentiation of the 
CNS because it offers advantages dis- 
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tinctive to motoneurons, for example, 
readily determined behavioral function, 
electrophysiological accessibility due to 
the large somas, relatively simple inputs 
and outputs, and ease of study in early 
development. 

Motoneurons were identified by inject- 
ing horseradish peroxidase (HRP) into 
each of the three striated muscles at- 
tached to the rat penis: the ischiocaver- 
nosus (IC), bulbocavernosus (BC), and 
levator ani (LA) (5). The muscles of 30 
male anesthetized Sprague-Dawley rats 
were injected with 3 to 50 tul of a 30 per- 
cent solution of HRP (Sigma type VI) in 
saline by means of a 10-,tl syringe under 
a dissecting microscope (6). Multiple in- 
jections were used to distribute the HRP 
evenly throughout the muscle, and after- 
ward the exposed perineal region was 
flushed with saline (7). The animals were 
killed 24 hours later and the retrogradely 
transported HRP was stained in the spi- 
nal cord segments caudal to thoracic 13 
(8). 

After the injection of HRP into IC, ret- 
rogradely labeled motoneurons were 
found in the extreme ventrolateral quad- 
rant of the ventral horn in the fifth and 
sixth lumbar spinal segments (L5 and 
L6). Injection of HRP into either the BC 
or LA resulted in labeled cells being 
found in the dorsomedial portion of the 
ventral horn, 50 to 250 ,um from the mid- 
line and 200 to 400 Atm below the ventral 
margin of the central canal (Fig. la, ar- 
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Hormone Accumulation in a Sexually Dimorphic 
Motor Nucleus of the Rat Spinal Cord 

Abstract. The fifth and sixth lumbar segments of the rat spinal cord were found to 
contain a sexually dimorphic nucleus, the spinal nucleus of the bulbocavernosus 
(SNB). The SNB, which contains motoneurons innervating perineal striated muscles 
in normal male rats, is diminished or absent in normalfemales and in males with a 
genetic mutation rendering them insensitive to androgens. The presence of the nucle- 
us is apparently not dependent on genetic sex, but on the action of androgens. The 
motoneurons of the adult male SNB accumulate hormone after systemic injections of 
radioactive testosterone or dihydrotestosterone, but not estradiol, and the SNB mo- 
toneurons accumulate more of the injected androgens than do other motoneurons in 
the same spinal segments. These results demonstrate a morphological sex difference 
in hormone-sensitive motoneurons that are probably involved in the sexually dimor- 
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row). These latter neurons form a com- 
pact nucleus extending 1.5 mm from 
caudal L5 to rostal L6, on the border of 
the ventral funiculus of white matter. 
The neurons of this nucleus are large (30 
to 50 gm in diameter), multipolar, and 
stain densely for Nissl substance. Be- 
cause we believe this nucleus is hitherto 
undescribed, we propose naming it the 
spinal nucleus of the bulbocavernosus 
(SNB). This name seems appropriate 
since other evidence suggests that the 
LA may more properly be called the dor- 
sal bulbocavernosus (9). Comparison of 
thionin-stained L5 and L6 cord sections 
from male and female rats revealed that 
in females there are fewer cells in the re- 
gion (10) and the few cells present are 
smaller than those of the male SNB, re- 
sulting in the apparent absence of the 
SNB in female rats (Fig. 1, a and b). 

Because some motoneurons of the 
male rat spinal cord accumulate radio- 
activity after injection of tritiated di- 
hydrotestosterone (DHT) (Ii), and be- 
cause the position of cells in the SNB 
make them readily distinguishable, we 
used autoradiography to determine 
whether these particular motoneurons 

Table 1. Percentage of SNB or VLMN cells 
that are labeled after injection of tritiated hor- 
mone, according to either the Poisson or five- 
times-background criteria. 

Hor- SNB VLMN 
mone Poisson 5x Poisson 5x 

DHT 97.6 68.6 96.4 34.9 
T 96.0 40.1 77.4 7.7 
E 3.3 0 5.8 0 

accumulate hormones. Adult male rats 
were castrated and adrenalectomized, 
then maintained on drinking water con- 
taining 0.9 percent saline. Two days later 
an intra-atrial catheter was implanted, 
and 24 hours after catheter implantation 
the animals were injected with tritiated 
DHT, testosterone (T), or estradiol (E) 
(1.2 nmole per 100 g of body weight in a 
0.3-ml vehicle of 50 percent ethanol) 
(12). One hour after injection the rats 
were decapitated and the lumbar and 
sacral sections of the spinal cord were 
removed. Each cord was cut into blocks 
two spinal segments long and frozen with 
dry ice. The tissue was cut in 6-tzm trans- 
verse sections in a cryostat at -20?C, 

and placed on microscope slides pre- 
viously coated with nuclear track emul- 
sion. The autoradiograms were photo- 
graphically developed 29 to 258 days lat- 
er, counterstained with thionin, and 
examined under a microscope (13). 

To decide whether a given cell was sig- 
nificantly labeled, we used a Poisson 
model of the distribution of reduced sil- 
ver grains. The expected number of 
grains over the nucleus of a cell was cal- 
culated from the density of grains over 
the background (adjacent unstained 
neuropil) and the area of the cell's nucle- 
us. This expected number was then used 
as the mean of a Poisson distribution de- 
scribing the number of grains that would 
occur over that cell's nucleus by chance. 
If the actual number of silver grains over 
the nucleus was more than would be ex- 
pected by chance for that Poisson distri- 
bution (P < .01), then the cell was con- 
sidered labeled. This criterion is less 
stringent than the more frequently used 
criterion of five times background den- 
sity (14), but the Poisson distribution 
provides a more accurate evaluation of 
whether a cell is labeled. Each hormone 
was injected into three males and at least 

Fig. 1. Sections from the lumbar segments of the rat spinal cord. (a) and (b) Thionin-stained 50-,tm transverse sections from male and female fifth 
lumbar segments, respectively. The arrow in (a) points to the left spinal nucleus of the bulbocavernosus (SNB) of the male. Note the virtual 
absence of the SNB in the female cord in (b). Scale bar, 400 gm. (c) Section of the lumbar spinal cord of a genetically male rat which because of 
the testicular feminization (Tfm) mutation, possesses few androgen receptors. Despite the fact that this is a genetic male, the SNB is absent, 
implying that the interaction of androgens with their receptors is important to the development of the SNB. Normal male littermates of the Tfm 
males have a normal SNB. Magnification as in (a) and (b). 

Fig. 2. Autoradiograms from the fifth and sixth lumbar segments of the male rat spinal cord, stained with thionin (scale bar, 50 am). (a to c) Cells 
of the spinal nucleus of the bulbocavernosus (SNB) after injections of tritiated DHT, T, and E, respectively. Note accumulation of hormone over 
the relatively unstained nucleus in (a) and (b), but not in (c). (d) Ventrolateral motoneurons of the fifth lumbar segment after injection of tritiated 
DHT. Exposure periods: (a) 211, (b) 67, (c) 64, and (d) 211 days. 
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50 SNB cells were analyzed from each. 
The SNB neurons were easily identified 
by location, large somas, multipolar 
shape, and dense staining. For purposes 
of comparison, the nuclei of 50 large, 
multipolar, densely staining motoneu- 
rons in the ventrolateral portion of the L5 
and L6 cord sections were examined. 
This population includes but is not exclu- 
sively the motoneurons of IC. The ob- 
server analyzing the autoradiograms was 
unaware of which hormone had been in- 
jected (Fig. 2). 

The percentages of SNB cells labeled 
by the three hormones are shown in 
Table 1, where both the Poisson and the 
five-times-background criteria are listed. 
With either criterion, more SNB cells are 
labeled after DHT or T injections than E 
(15). Injection of E resulted in densely la- 
beled cells being found in the dorsal horn 
and lamina X (16). The SNB neurons ac- 
cumulated hormone more heavily after 
DHT than T injections, since a greater 
proportion of SNB cells reached the 
more stringent five-times-background 
criterion after DHT injection (15). More 
of the SNB cells accumulated T or its 
metabolites than did the ventrolateral 
motoneurons (VLMN) (Table 1). The 
SNB cells also accumulated radio- 
activity more densely than VLMN cells 
after DHT or T injections since a greater 
number of the SNB cells reached the 
five-times-background criterion after in- 
jection of these hormones (15). 

Because the SNB cells of adult rats ac- 
cumulate androgens but not estrogens, 
one might expect that androgens play a 
role in the sexually dimorphic develop- 
ment of the SNB. Thus, King-Holtzman 
genetic males with the testicular femini- 
zation (Tfm) mutation should lack the 
SNB, because such males have 85 to 90 
percent fewer androgen receptors (17). 
Examination of the spinal cords of 
Tfm males confirmed the predicted ab- 
sence of an SNB in these animals (Fig. 
lc) (18). 

The function of the SNB may be in- 
ferred from the function of the BC and 
LA, which is undoubtedly sexual since 
both of these muscles are attached exclu- 
sively to the penis. In other mammals the 
BC or its homolog is involved in male 
copulatory behavior (19). The muscles 
BC and LA are absent or vestigial in 
adult female rats (9). Pre- or postnatal in- 
jections of testosterone propionate (TP) 
are effective in masculinizing the mor- 
phology of the perineal region in fe- 
males, including the LA which is present 
in female rats at birth, but atrophies in 
the first 3 weeks of life unless maintained 
by postnatal injections of TP (20). Such 
perinatal androgen injections in females 
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also masculinize their copulatory behav- 
ior (21). Therefore, the finding that the 
neurons of the SNB accumulate andro- 
gens or their metabolites, but not E, to- 
gether with the neonatal androgen sensi- 
tivity of the SNB's target muscles, sug- 
gest that androgens but not estrogens 
play a role in the development of the di- 
morphism of the SNB. This hypothesis is 
supported by the absence of the SNB in 
Tfm males with reduced androgen recep- 
tors. 

The penile striated muscles are in- 
volved in reflexes discovered by Hart 
(22), which are controlled by the spinal 
cord, and these reflexes may be related 
to copulatory behavior (23). Androgens, 
acting in the spinal cord, augment these 
reflexes, but E does not. Neonatal cas- 
tration of males permanently reduces the 
frequency of such reflexes (24). The ac- 
cumulation of hormone by the SNB mo- 
toneurons after androgen but not E injec- 
tion suggests that the SNB is a site of ac- 
tion of androgens in modifying the penile 
reflexes. If this were the case, then the 
SNB cells provide significant advantages 
for studying the mechanisms by which a 
hormone modifies behavior of a verte- 
brate, because these neurons are large, 
well localized, and their behavioral func- 
tion readily determined. 

S. MARC BREEDLOVE 
ARTHUR P. ARNOLD 

Department ofPyschology and 
Laboratory of Neuroendocrinology, 
Brain Research Institute, University of 
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