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termined from dark-adapted intact prep- 
arations (upper panels of Fig. 2, A and B) 
and compared with the bioluminescent 
emission spectra (lower panels of Fig. 2, 
A and B). In all cases, for dark-active 
green-emitting Photuris (lucicrescens and 
versicolor) and for dusk-active yellow- 
emitting Photinus (pyralis and scintil- 
lans), the peak of the bioluminescence 
emission is identical with the peak of the 
visual spectral sensitivity. The green vi- 
sual spectral sensitivity curves match 
the Ebrey-Honig nomograms. However, 
the yellow visual sensitivity curves are 
much narrower than the Ebrey-Honig 
nomograms, resulting in a depressed 
sensitivity in the green (X - 500 to 525 
nm) by a factor of 50 compared with 
green-sensitive P. lucicrescens and P. 
versicolor (upper panels of Fig. 2, A and 
B). 

From the range of wavelengths of Fig. 
1 there is a minimum of eight distinct 
wavelength regions where differences in 
bioluminescence colors and in visual 
spectral sensitivities are statistically sig- 

nificant (9). Therefore, for the four spe- 
cies tested, the probability that the 
agreement between bioluminescence 
colors and ERG spectral sensitivities is 
fortuitous is (1/8)4= 2.4 x 10-4. The 
green visual spectral sensitivity curves 
(Fig. 2, P. lucicrescens and P. versicol- 
or) have the usual Dartnall nomogram 
shapes of visual pigment absorption 
curves and are within the range of insect 
spectral sensitivity (10). We suggest that 
the yellow visual spectral sensitivity in 
P. pyralis and P. scintillans is an adapta- 
tion to maximize sensitivity to biolumi- 
nescence when green foliage-reflected 
light intensities are high, in temperate re- 
gions where twilight periods have signifi- 
cant lengths. A second selective advan- 
tage accrues for signal detection during 
dusk activity to yellow bioluminescent 
over green bioluminescent fireflies. A 
third selective advantage would be to 
evolve narrow yellow visual sensitivity. 
This narrowing, biasing against green 
sensitivity, is stronger evidence for ad- 
aptation to increase the ratios of biolumi- 

nescent signals to green ambient light, 
than even the correspondence between 
yellow bioluminescence and yellow visu- 
al spectral sensitivity. It is a fine tuning 
of the yellow visual spectral sensitivity 
for further biasing against noise-the 
background green foliage-reflected light. 

The distinction made in this report be- 
tween early-yellow and late-green is nec- 
essarily oversimplified. The biolumines- 
cence emission of firefly species, evolv- 
ing in the presence of changing ambient 
spectral intensities during twilight, 
should exhibit a complete range from 
green to yellow, depending on the specif- 
ic time periods of their flashing activities 
and on the reflectance properties of their 
habitats (11). A number of aspects of this 
hypothesis remain to be tested. For ex- 
ample, seven of the nine exceptions to 
late-flashing green emission are salt- 
marsh, wet prairie species. The precise 
ERG spectra and habitat and time-spe- 
cific ambient spectral intensitities of 
these species should be measured. In ad- 
dition, comparisons should be made for 
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Fig. 2. A comparison of electroretinogram (ERG) spectral sensitivities and bioluminescence emission spectra for four firefly species. (Upper 
panels) Log of the relative quantum sensitivity plotted as a function of wavelength for the corneal 0.5-mV-amplitude ERG in dark-adapted intact 
eyes. The dashed lines represent Ebrey and Honig nomogram curves for pigments with Xmax at the observed peak wavelengths. The error bars 
represent ? 1 standard deviation. (Lower panels) Superposition of the relative photon intensity of species bioluminescence emission spectrum 
(dotted lines; the peak position is indicated in parentheses) and the ERG relative spectral sensitivity. 
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bioluminescent and nonbioluminescent 
Lampyridae, active at dusk. However, 
the present combination of electro- 

physiological, spectroscopic, and field 
behavioral data strongly support the 
hypothesis that the shift in color of fire- 
fly species bioluminescence and in visual 
spectral sensitivity from green to longer 
wavelengths is an evolutionary adapta- 
tion to increase the efficiency of sexual 
signaling in different, prevailing light en- 
vironments. 
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signaling in different, prevailing light en- 
vironments. 
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in general are considered to exploit a dif- 
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sion feeders, which obtain their food by 
removing it from the overlying water. In- 
deed, differences in factors controlling 
food supply are one explanation for the 
alternative development of predomi- 
nantly deposit- or suspension-feeding 
benthic communities (2). Higher wa- 
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ter velocities increase the flux of sus- 
pended materials, favoring suspension 
feeders, while removing fine-grained par- 
ticulate matter from the sediment or pre- 
venting the deposition of this material, to 
the disfavor of deposit feeders. 

A clear-cut distinction between these 
two feeding modes is probably unrealis- 
tic. Because there can be considerable 
resuspension of bottom materials by wa- 
ter currents in both the shallow (3) and 
deep sea (4), it could be advantageous 
for an animal to adjust its feeding behav- 
ior to utilize food in suspension or depos- 
ited on the bottom, depending on the 
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Fig. 1. Tentacles of Pseudopolydora kempijaponica, held in characteristic helical arrangement 
during suspension feeding. The current is moving from left to right at about 13 cm/sec (x4). 
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Induction of Suspension Feeding in Spionid Polychaetes by 

High Particulate Fluxes 

Abstract. The feeding behavior of three species of spionid polychaetes varied with 
water velocity. At moderate flows the worms ceased deposit feeding, formed their 
feeding tentacles into helices, and lifted them into the water column to capture mate- 
rial in suspension. This behavior was apparently a response to increased flux of sus- 
pended matter at high flows rather than to flow velocity alone. Organisms capable of 
switching their feeding behavior may be common in dynamically variable benthic 
environments. 
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