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Fig. 1. Ratio of residual radioactivity at de 
vated (SCd) and innervated (SCi) NMJ', 
mice injected with 125I-labeled a-BGT at ? 
ous times after denervation and killed 2 c 
(t) later. The average half-time for turnove 
denervated junctional receptors (Td) was 
proximated from the ratio of the two 
ponential decays, SCdISCi = (2 exp - t 
SCdo/(2 exp - tTi)SCio, with an avei 
half-time for turnover at innervated juncti 
of 10 days (11) and given that the radioacti 
in the two junctions at time zero is the s; 
[(SCi) = (SCd)]. Errors bars represent s 
dard errors of the means for groups of thre 
seven animals. Data points without error 1 
represent values for single animals. 
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in- acetylcholine (ACh) receptors which 
ogy occurs at the neuromuscular junction 
the (NMJ) after innervation (4-6). Two dis- 
wn. tinct turnover rates for ACh receptors in 
the muscle have been described: for extra- 

r of junctional receptors (before innervation 
and after denervation), a half-time of 
about 1 day (6-11), and for adult in- 
nervated junctional receptors, a half- 
time of about 10 days (7-16). Recently, 
however, a half-time of 2 to 3 days for 

4 denervated adult junctional ACh recep- 
tors was reported (12-13). In the present 
study we sought to determine whether 
the denervated junctional ACh receptors 

2n demonstrate a third stable turnover rate 
- or whether the reported half-time of 2 to 

3 days represents a point in a time-de- 
pendent decay of neuronal influence on 
the turnover rate of junctional ACh re- 

1 ceptors after denervation. 
We assessed the turnover of ACh re- 

ceptors by measuring the loss of radio- 
activity bound to the NMJ's after an in- 

ner- jection of 125I-labeled a-bungarotoxin (a- s of 
vari_ BGT), the inhibitor of the nicotinic ACh 

lays receptor of vertebrate muscle (17). This 
;r of assay gives a reliable measure of the deg- 
ap- radation of both extrajunctional and 
ex- junctional ACh receptors (1, 9, 14-16, 

rage 18-20) rather than of mere dissociation 
ions of a-BGT from the receptors. For the in- 
vity nervated NMJ's the validity of this assay 
ame obtains in part from the demonstration 
,tan- that various metabolic inhibitors cause a .e to 
bars decrease in the rate of both the loss of 

radioactivity after labeling (9, 14-15) and 
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the recovery of neuromuscular response 
(21) after inactivation with a-BGT. In 
preliminary studies we found that acti- 
nomycin D similarly decreases the rate 
of loss of radioactivity from denervated 
NMJ's. Furthermore, up to 16 days after 
denervation, structural localization and 
absolute density of radioactive sites after 
inactivation at the NMJ's by 125I-labeled 
a-BGT is the same as that at innervated 
junctions, and at both kinds of junctions 
the loss of radioactivity mirrors the ap- 
pearance of new labeled binding sites 
(13). Because of this steady state at the 
NMJ, degradation reflects metabolic 
turnover of receptors. 

We used mouse sternomastoid muscle 
since it has an easily accessible nerve 
and a well-defined end-plate band and 
was previously used in our laboratory for 
electron microscope (EM) autoradiogra- 
phy studies of receptor localization (20) 
and turnover after denervation (13). We 
anesthetized the mice (27 to 37 g) with 
Nembutal and denervated one of the two 
sternomastoid muscles by removing 1 to 
2 mm of nerve as close to the muscle as 
possible. 

At different times after denervation, 
groups of these animals were injected 
with 125I-labeled a-BGT (4.1 /ug per 100 g 
of body weight, intraperitoneally) (22). 
Two days later, the animals were killed 
under anesthesia by intracardial per- 
fusion with 4 percent paraformaldehyde 
and the two sternomastoid muscles were 
removed and stained for acetylcholines- 
terase in order to identify the end-plate 
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Fig. 2. Decay of radioactivity bound to in- 
nervated and denervated sternomastoid mus- 
cles after injection of labeled a-BGT. All 
curves are normalized to 100 percent at the 
time of injection. 
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Neuronal Control of Acetylcholine Receptor Turnover 

Rate at a Vertebrate Neuromuscular Junction 

Abstract. The turnover rate of acetylcholine receptors at neuromuscularjunctions 
in mice increases progressively after denervation and, after 15 days, reaches a half- 
time of 30 + 5 hours. Denervation thus causes the clusteredjunctional acetylcholine 
receptors to assume the rapid turnover characteristic of extrajunctional receptors 
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band (23). The muscles were cut into 
three pieces (one containing the stained 
end plates), and the pieces were weighed 
and assayed for radioactivity in a gamma 
counter. Specific end-plate radioactivity 
(SC) was determined for each muscle by 
subtracting the pooled radioactivity 
bound to the pieces without end plates 
from the piece containing the end plates 
on a per weight basis. A ratio of the spe- 
cific counts for denervated to innervated 
junctions was determined for each ani- 
mal; the average at each time is present- 
ed in Fig. 1. We have determined that 
there is no significant difference between 
the amount of radioactivity bound to the 
left and right muscles under control con- 
ditions. Furthermore, it has been estab- 
lished (13) that the turnover rate for junc- 
tional ACh receptors determined by the 
gamma counting method is very close to 
that determined by EM autoradiography 
for the radioactivity at the postjunctional 
membrane. 

Figure 1 shows that after denervation 
the radioactivity progressively decays 
more rapidly at denervated junctions 
than at innervated junctions. Eight days 
after denervation the half-time for turn- 
over of denervated junctional receptors 
was 2 + 0.4 days, which is consistent 
with the value derived from EM autora- 
diography (approximately 2.5 days) (13). 

An independent comparison of the 
turnover rates of denervated extra- 
junctional and junctional receptors with 
those of normal junctional receptors was 
also made. Fourteen animals were inject- 
ed with 125I-labeled a-BGT 11 days after 
denervation. Four, seven, and three 
mice were killed 8 hours, 2 days, and 3 
days after the injections, respectively, 
and the muscles were removed. The spe- 
cific end-plate counts for denervated and 
innervated muscles and the extra- 
junctional radioactivity were each nor- 
malized to 100 percent at time zero and 
plotted semilogarithmically (Fig. 2). 
These data show the exponential nature 
of the decay for the denervated junctions 
over this 3-day period. 

Eleven days after denervation the half- 
time for denervated junctional receptors 
was 34 + 5 hours (Fig. 1), and the inde- 
pendently derived value was 33 ? 8 
hours (Fig. 2). Fifteen days after dener- 
vation, the half-time for turnover at de- 
nervated junctions reached 30 + 5 
hours. By that time, the turnover rate for 
junctional ACh receptors was well with- 
in the range of values reported (7, 8) for 
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nervated junctions reached 30 + 5 
hours. By that time, the turnover rate for 
junctional ACh receptors was well with- 
in the range of values reported (7, 8) for 
extrajunctional receptors in noninner- 
vated muscle and approaching the value 
of 17.5 hours given in Fig. 2 (24). 

It has been reported that a maturation 
period is required between the time that 
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clusters of ACh receptors first appear at 
the forming NMJ's and the time that the 
turnover rate of these junctional recep- 
tors decreases (4-6, 25). The present 
data suggest that there is a finite period 
after denervation during which the neu- 
ronal influence on turnover of junctional 
ACh receptors fades, even though the 
dense clustering remains unchanged 
(13). Thus the acceleration of turnover 
may reflect a reversal of the process of 
maturation of junctional receptors seen 
during development. 

Note added in proof: Since this report 
was accepted for publication, we have 
obtained evidence that Fig. 1 can be 
modeled by assuming that the junction 
contains a dual population of receptors: 
the original receptors, present at the time 
of denervation, with a slowly increasing 
turnover rate, and new ones, with a turn- 
over rate equivalent to that of extra- 
junctional receptors (26). 
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appearance of catecholamine fluorescence in presumptive neuroblasts of the embry- 
onic gut. These cells normally express the noradrenergic phenotype transiently dur- 
ing embryonic development. The effect of reserpine was reproduced by treating 
mothers with hydrocortisone acetate. Moreover, the reserpine effect was blocked by 
treatment with dexamethasone, which inhibits the stress-induced increase in plasma 
glucocorticoids, and by mitotone, which causes adrenocortical cytolysis. It is con- 
cluded that reserpine, through the mediation of maternal glucocorticoid hormones, 
alters the phenotypic expression of these embryonic neuroblasts. 
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