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Without any quantitative information 
about the physical properties of colors, 
tones, speech sounds, or words, we can 
learn something about how humans pro- 
cess such stimuli from an analysis of rat- 
ings of perceived similarity, frequencies 
with which the stimuli are actually con- 
fused with each other, latencies of dis- 
criminative responses, or, in the case of 
infants and other animals, magnitudes of 
the "orienting reflex" when one stimulus 
is substituted for the other (1, 2). This 
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physical dimensions are as yet poorly 
characterized, and it is essential in the 
case of symbolic stimuli such as words, 
for which the relevant semantic dimen- 
sions are not even present in the physical 
stimuli. 
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ceived similarity is represented by spa- 
tial proximity go back to the suggestions 
of Isaac Newton (3) that spectral hues 
be represented on a circle, of Helm- 
holtz and Schrodinger (4) that colors in 
general be represented in a curved Rie- 
mannian manifold, of Drobisch (5) that 
pure tones be represented on a helix, and 
of Henning (6) that odors and tastes be 
represented within a prism and a tetrahe- 
dron, respectively. However, little prog- 
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ress was made toward the development 
of data-analytic methods for the con- 
struction of such spatial representations 
on the basis of psychological data until 
the efforts of a group of psychome- 
tricians, beginning in the late 1930's at 
Chicago and subsequently moving to 
Princeton, culminated in the 1952 devel- 
opment by Torgerson of the first fully 
workable method of metric multidi- 
mensional scaling (7, 8). 

This method is called "metric" be- 
cause it requires psychological estimates 
of metric distances between the stimuli. 
Either one had to assume that the data 
(for example, subjective ratings of dis- 
similarity) increased linearly with such 
distances (9), or one had to use some 
preliminary (for example, "Thursto- 
nian") scaling procedure to convert the 
data into numbers that could then be as- 
sumed to increase linearly with distance 
(8). Even after such numbers had been 
obtained, the computation required sev- 
eral more stages in which one succes- 
sively (i) estimated the "additive con- 
stant" and thus obtained a matrix of esti- 
mated distances between the points; and 
then, on the basis of a theorem of Young 
and Householder (10), (ii) computed a 
matrix of scalar products between the 
points (interpreted as vectors issuing 
from their common centroid), and (iii) 
factored this matrix into its eigenvalues 
and vectors to obtain explicit coordi- 
nates for the stimuli in a Euclidean space 
of a number of dimensions correspond- 
ing to the number of large eigenvalues. 

Meanwhile, I had been approaching 
the problem of analyzing such measures 
of similarity by estimating the nonlinear 
form of the monotonic function, fmon, 
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sij = fmon (dij) sij = fmon (dij) (1) (1) 

where sij is the obtained measure of simi- 
larity between stimuli i andj and where 
dij is a distance between corresponding 
points i and j that satisfies quite general 
metric conditions. The conditions that I 
proposed were (i) the distance axioms of 
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positivity, symmetry, and the triangle in- use the inverse, logarithmic function to 
equality, required for any metric space convert confusion frequencies into dis- 
(11), tance-like numbers and, by means of met- 

?dJ> d = 0 (for i # i) (2a) ric multidimensional scaling, to obtain a 
>d=(2b) Euclidean spatial representation (13). 

dij 
it 

d h + d^J (2c)The photograph on the cover shows a 
dij - dih + dtJ (2c) 1955 solution that I obtained in this way 

and (ii) the limiting, additivity condition for nine colors (14). 
of the triangle inequality, On the basis of still weaker assump- 

tions, Coombs and Hays [see (15)] de- 
vised procedures that required only the 

for those triples in which there is reason rank order of the similarity data. But 
to believe that stimulus h falls between i their method correspondingly yielded 
and j on a shortest connecting path (12, only the "nonmetric" rank orders of the 
13). In this way I established that the re- projections of the points on orthogonal 
lation of confusion frequency to distance axes of the space. 
generally approximates a negative ex- Various limitations of these early 
ponential function (a function that I had methods of multidimensional scaling dis- 
also derived from a "diffusion" theory of couraged their wide adoption. In addi- 
the internal process). I was then able to tion to its strong assumption of linearity, 
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Torgerson's original metric method was 
not readily extendable to other cases in 
which, for example, the underlying met- 
ric is non-Euclidean, or the matrix of 
data is incomplete. My own early meth- 
od of dealing with nonlinearities was 
cumbersome and did not handle error 
variability in an optimum way. And the 
method of Coombs and Hays was im- 
practical except for small matrices of 
data, and its nonmetric solutions failed 
to preserve what I subsequently found to 
be the essentially metric constraints of 
the ordinal data. 

Modern "Nonmetric" Approach 

At the Bell Telephone Laboratories, I 
began in 1960 to explore a new approach 

I I1 

-.o 

ij mon dii) 

0 

0 
B 

- oc~ 

0 0.4 0.8 1.2 1.8 

537 55 584 600 610 628 61 674 

Wavelength (nanometers) 

D 

03 
Cln 

la 
03 

03 

A 8 C E F G H J K L 0 P R S T U V W I Xi 2 Z ( 2 3 4 5 6 7 819 9 
A.92 04106130'14 10 t1'3 46052203 2340606.093523 063713 17 1t 2 07030207D 0S 806 OS 060 032 }A 
8 584731'0528 T 21 05 19.3440 06 12 2225 16 1802'834084 3042 12 171440327443 17 04 

' 

C043887 170429 130 0 139 2435 14030951 3424 14060611 14 329238 13 1531 14 1030 28 24 11z c 

8o8.62 887 23 40.36 o09 3 81 56 080709 2709452 o 06 1720;2740 15330 o090611 019108 o0506*0 
E:06;,13A4 069702'0404 17-01 050604D4'05'01-05 1007_678303 020506050403 05030!OZpi40203 .3" E 

F0o4 51 33 3902090q0029 0s33 16 500706 104212 35 14022127 25 l927 3 0 164725262421 0505 o 
098s 27380 14 900605223356 164 1382 5223 210503 15 143221 2339 1 5 1405 100417.l23 020 11 

803 45 23 2509'320887 10 1009 2905 0oo 1408 17 37'04 36 5909 33 141 0309 15 4370 35l7040303 H 
i"64 07 07 13 10080612 93030516 3 3007 0305 19 35 16'10 05 08 020s507 0?05 09 608 05 02 04 05 '1 
J 009 38 0902 24 1805 04 85 2231 0803 21 634 7 I 02070909 22 32 28 67 66 33 15 07 1 28 2926 23 'J 
K 0524 38 7301 17 25 11 05 27T91 33 10 12 31 14 31 22020223 17 3363 16 1805 09117 08 08 18 14 13 0506 K 

02694345 10 24 12 26 09 3027 860602 093736 28 1205 16 19 2031 25 59 12 13jl715 26 2936 160703 L 
M 24 12 05 1407 17 2910808 11 23089662 11 10 15200709130421 09 18 08 05 07 05 07 1071004 M 
N31 04 13 3008 l2 L0l16 130316085993053)90528 12 101604120406 1 05 02 40304 060202 lo 02'N 
0"07 07 200605 09 7607 02 39 26 10040886 3735 1003 0411 4 2535272719 17 07o06 18 14 1i 2012 0 
P 05 22 33 12053622 12 03 78144605621 834323 09 04 12 19,19 1941 3034,44 41 I 15 17 24 23 2513 P 

a'08:20-38 11 04.15 005.02 27 23'26.07 622 5191 110203 0614 1237 50,6334 32 17 2 0927 40 5 37 24 '0 

R 13 14-16 230534 26 5 07I2 2t 37 14 12.12 290887`16023' 23 62-t4 12 1307 IO13 04-07 12 07.0901 021.' 

51 72405 30 1 265 59 1603 13 13 05 17060603 18 96096624 12 10060708 0202 15 28-09-0350505 02 S 
f 3tOOl O105 4603 06 14 06 140706 D506 1I 0407660805 0402020605 05 03 30300807.0614 064T 

0T1429 2 32 04'32113421 07443211 1306 20 12 4051 06 351 34 1709 11I06106 1 34 100909?7o04 03 U 

V 05 17 24 1609290613905 1t 264304 09 17 10 17 I9 063292 175735 fo10 142 944 3625 100f05 

w"0921 3022093625 15 04252918 150 62620:2561 1204 19 208622 25 22 1022 19160509 1 10603 07-W 
)o076445 1903'28 10601 35042 10 24321 01203l2 172191 48261220 24 27 l6 5729 1617 06 X 

Y 0923 62 50426 09 1 30 12 1405 06 14 3052 050704 06 13 21 4418623 26 4440 15 9 2622 3323 16 Y 
i 03 46145 I80222 7170 0723 21 51 1 02 9559 72 14 0403 09 I 1 36 42 87 16 21 2709 1025 664715 15 2 

t0205i100303 05 13 0229 05 l4 0907 14 30 280904 023 12 14 17 19 22 4613 8 10 08 19 32 57 55s 

07 14.22:05i20'13 03 25j2 09t4-02 3737 2806050 061011 9730 138628954 2005 14202 1 11 2 

03 08 21 o5;0432 06 120223 06 13 052 0537 90 706 1606 2 25 12 164 86 2341 16170810 

4 06,19 19122 t5 460721 13 9 1 03 17 550837240352644 842 44 32.00303 .4 
.454 1 1425 04 6710714 046410 041 7092702 14 450 1O1 4103069 90 42 241006 05 5 

6207 03o0 7423 04 1402 t 11 2706 02 163011403 12 s00 5 38.39 15.142624 17691405,14 

7-06 33 22114 25 ZS 04i6:24 13 32 0706 0736 139 2 0 03 1303930 3050229*1815 12 e 065 70 20 13 t7 
03 23 0603 125 06213 1014 0306141245 0206 4 06 070524 35'5 429l6109 

3060961 26^ 
;03 14 23030106 14050230060716I 19039 3205607906060308 112122415709(1204911 4256991 7 9 
l 0 II 020 1 0Q7 1 4105 30 03 0203 252 ?9'02 034 05 03|021l5 i 20j'SO26091105'22 

1 7528 94'f 
a a t c t n r $ F T G [ H r IJK L kf 11 0 O P t o R S T U'viw X Y 0 1 213 t 4 5 16 t 4St 9 'Q 

2.0 
Obtained Euclidean distance 

cashe0 
oaSho E 

Signal presented second 

Fig. 1. Illustrations of nonmetric multidimensional scaling. (A) Judged similarities between 14 spectral colors. [From Ekman (22)] (B) Two- 
dimensional configuration obtained by my analysis of Ekman's data. (C) Obtained relation, for all pairs of the 14 colors, between judged similar- 
ities and corresponding Euclidean distances between points in my obtained configuration. [From Shepard (16)] (D) Percentage of "same" 
responses for all pairs of successively presented aural signals of the international Morse code. Entries in the principal diagonal correspond to 
correct responses. [From Rothkopf (23, 24)] (E) Two-dimensional configuration obtained by analysis of the Morse code data. The actual dot-and- 
dash patterns are indicated beside the points. [From Shepard (24)] 
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to multidimensional scaling, called 
"analysis of proximities," that proved 
capable of overcoming the limitations of 
the earlier approaches. I used a one- 
stage iterative method (i) to adjust the 
positions of points in a space until the 
rank order of the interpoint distances 
was as nearly as possible the inverse of 
the rank order of the corresponding simi- 
larities, and (ii) to find the space of the 
smallest number of dimensions for which 
the residual departure from a perfect in- 
verse ranking was acceptably small (16). 

Following a few adjustments, on 17 
March 1961 the iterative process with 
which I had been experimenting finally 
converged to its first stationary configu- 
ration (at just 2:33 p.m. EST, according 
to the computer log). From then on, re- 
sults of surprising precision were regu- 
larly obtained. Provided that the number 
of points was not too small relative to the 
number of dimensions, the merely quali- 
tative, ordinal relations in the similarity 
data generally turned out to be sufficient 
to determine the quantitative, metric 
structure of the spatial representation. In 
two dimensions, a test configuration of 
as many as 15 random points could be 
essentially reconstructed on the basis 
merely of the rank order of the interpoint 
distances (16); and with as many as 45 

random points, I later found that prod- 
uct-moment correlations between t] 
and recovered distances averaged o' 
0.9999997 (17). 

Such nonmetric multidimensio 
scaling soon reached essentially its pr 
ent state of development when my as 
ciate J. B. Kruskal employed stand; 
gradient methods to minimize an expi 
itly defined sum-of-squares measure 
departure from the monotonic relat 
that I had posited between similarity c 

distance; namely, the "stress" measi 
(S) given by 

S=- 

i,j 

Here, the dij are the distances betw< 
the points at any particular iteration g 
en, in terms of the N x K coordinates 
of the N points in the K-dimensional ] 
clidean space, by the usual distance f 
mula 

d = (Xik - Xjk)j 
kc= 1 

and the dij are numbers that (i) are moi 
tonic with the similarity data s,j a 
(ii) minimize stress relative to the s] 

ma "G 
na 

Fig. 2. Sound spectrograms for 16 syllables differing in the initial consonant, centered on 
corresponding points of the two-dimensional solution obtained by applying Shepard 
Chang's scaling program to the average confusion matrix for all of Miller and Nicely's coi 
tions that imposed no differential filtering of high or low audio frequencies. In the spectrogra 
[rearranged from Carroll and Wish (30)] the distribution of audio energy is shown as a funct 
of frequency (from 0 to 6 kHz) on the vertical axes, and time, on the horizontal axes. 
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tial distances dij at each iteration (18). 
rue In some trial number of dimensions, a 
ver starting configuration of points is first 

constructed, either at random or by a 
nal metric method (19). On each ensuing it- 
es- eration, then, (i) the best-fitting mono- 
so- tonic sequence dij is determined anew by 
ard an algorithm for least-squares monotone 
lic- regression; (ii) the N x K partial deriva- 
of tives of stress with respect to the coordi- 

ion nates, xik, are evaluated; and (iii) the 
and coordinates are adjusted in the direction 
ure of the negative gradient or steepest de- 

scent by X'ik = Xik - a S/axik, where 
a includes an adaptively modified step- 
size factor (18). The process is termi- 
nated when the components of the gradi- 
ent have become small enough to in- 

(4) dicate a close approach to a stationary 
configuration. (In order to exclude en- 

een trapment in a merely local minimum, dif- 
;iv- ferent starting configurations should be 
Xik tried.) The entire process can be repeat- 
Eu- ed in spaces of higher or lower dimen- 
`or- sionality, with the final solution chosen 

to achieve the best balance between par- 
simony, goodness of fit and, especially, 
substantive interpretability (20, 21). 

(5) 
no- 
Lnd Applications to Perception 
pa- 

Figure IA displays the first significant 
set of empirical data to which I applied 
my original program for "analysis of 
proximities" (16); namely, Ekman's data 
on the perceived similarities between 14 

' spectral colors (22). The stationary two- 
dimensional configuration to which the 
iterative process converged is shown in 
Fig. IB, together with a smooth curve 
subsequently drawn through the 14 
points. Figure IC shows the nonlinear 
relation between Ekman's similarity data 
and Euclidean distances in the obtained 
configuration. In addition to its good fit 
to the data, the two-dimensional solution 
is both more similar to Newton's (3) col- 
or circle and more parsimonious than the 
five-dimensional representation that Ek- 
man (22) himself obtained by applying 

I factor analysis to the data. 
Figure 1D displays the frequencies 

with which unskilled listeners in an ex- 
periment by Rothkopf (23) judged suc- 
cessive aural signals of the international 
Morse code to be the same. Figure 1E 
shows the two-dimensional solution that 
I obtained by applying Kruskal's im- 
proved program, MDSCAL, to these 
data, after averaging each entry sj with 

the its symmetrical counterpart sfj (24). The 
and two-dimensional solution seems more in- 

idms formative than the original 36 x 36 ma- 

tion trix of data. As is indicated by the added 
lines, perceptions of these aural signals 
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differed primarily with respect to the 
number of components (dots or dashes) 
in each signal, and the relative pre- 
ponderance of dots versus dashes among 
those components. Information about 
the sequential structure within each sig- 
nal was largely lost on these unskilled lis- 
teners. 

Figure 2 presents the solution that I 
obtained from an analysis of data collect- 
ed by Miller and Nicely (25) on errors of 
identification of 16 consonant phonemes 
(all followed by the vowel lal, "ah") in 
the presence of noise (26, 27). Centered 
over each of the 16 obtained points is a 
representative sound spectrogram for 
that syllable and, just below, its charac- 
teristic English spelling. The positions of 
the points are shown more precisely in 
Fig. 3A, by the phonetic symbols for the 
consonants. The added interpretive lines 
indicate how the speech sounds are orga- 
nized on the basis of such phonetic fea- 
tures as voicing, nasality, affrication, 
and place of articulation. As can be seen 
in Fig. 3B, the resulting fit was very 
close, accounting for about 98 percent of 
the variance of the data. As before (13, 
20, 24, 28), I found the confusion data to 
be 'well approximated by a negative ex- 
ponrential (the fitted curve). 

Analysis of Multiple Matrices 

We could also analyze separately the 
matrix of data for each subject, amount 
of training, or condition of stimulus pre- 
sentation. But a more powerful analysis 
is achievable by simultaneously taking 
account of the entire set of matrices in 
each case. A metric method of individual 
difference scaling, INDSCAL, origi- 
nated by another of my associates, J. D. 
Carroll, has proved particularly effective 
for this purpose (29). Carroll assumed 
that the same spatial configuration is ap- 
propriate for each individual subject or 
condition, but that the individuals differ 
with respect to the effective weights of 
the different dimensions. Accordingly, 
Carroll replaced the usual Euclidean dis- 
tance formula (Eq. 5) by 

dij =I Wmkik( Xjk) 
k= I (6) 

where wink is the weight of dimension k 
for individual m, and dj(m) is the resulting 
effective distance between stimuli i and j 
for that individual. Carroll and Chang 
adapted nonlinear interative least 
squares to the canonical decomposition 
of the three-way N x N x M matrix of 
stimuli by stimuli by individuals to ob- 
tain a metric configuration of the N stim- 
uli in an orthogonal coordinate space and 
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also the unknown weights of the orthog- 
onal dimensions of this space for each 
of the M individual subjects or condi- 
tions (29, 30). The larger, three-way ma- 
trix of data can support the extraction of 
a larger number of dimensions than is 
usually possible in the analysis of two- 
way matrices. Moreover, because the re- 
sults are not, as in the Euclidean two- 
way case, arbitrary with respect to rota- 
tion, the unrotated axes of the solution 
should be immediately interpretable. 

Carroll and Chang (31) applied IND- 
SCAL to the judged similarities of colors 
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collected by Helm (32) from subjects 
with various degrees of color blindness. 
Over 90 percent of the total variance was 
accounted for by a two-dimensional so- 
lution in which the ten spectral hues 
formed a circular configuration very 
much like the one (Fig. IB) that I had 
previously obtained. Now, however, the 
two orthogonal axes immediately corre- 
sponded to a red-green and to a blue-yel- 
low dimension, in agreement with cur- 
rently accepted "opponent-process" 
theories of color vision (33). Moreover, 
subjects were found to differ primarily 
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Fig. 3. Various multidimensional scalings of 16 English consonants based on the confusion data 
of Miller and Nicely (25). (A) the two-dimensional configuration of Fig. 2 with interpretive lines 
added. (B) Obtained (exponential) relation, for all pairs of the 16 consonants, between the con- 
fusion data and corresponding Euclidean distances in the obtained configuration in (A). [From 
Shepard (26)] (C and D) Four-dimensional INDSCAL solution obtained by a simultaneous anal- 
ysis of the individual matrices for all 17 of Miller and Nicely's conditions, projected onto the 
planes of dimensions 1 and 2 and dimensions 3 and 4. (E and F) The estimated weights of the 
various conditions of filtering and noise, projected onto these same two planes. [From Soli and 
Arabie (35)] 
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with respect to their weights for the red- 
green dimension, in agreement with the 
relatively greater prevalence of defi- 
ciency in the red-green system. 

Taking advantage of my demonstra- 
tion that the generally exponential rela- 
tion of confusion frequency to distance 
holds, in particular, for Miller and Nice- 
ly's data on confusions between con- 
sonants (Fig. 3B), Arabie and Soli (34, 
35) logarithmically transformed Miller 
and Nicely's data into distance-like num- 
bers. They then applied Carroll and 
Chang's INDSCAL to the entire set of 17 
resulting matrices-one matrix for each 
of the 17 different conditions of stimulus 
presentation; namely, six (NI to N6) for 
increasingly added masking noise, six 
(L2 to L7) for increasingly restrictive 
low-pass filtering, and five (H2 to H6) for 
increasingly restrictive high-pass filter- 
ing. Panels C and D of Fig. 3 display 
the resulting four-dimensional solution, 
which accounts for 69 percent of the var- 
iance in the total set of 17 transformed 
matrices (as opposed to 61 percent with- 
out the prior log transformation). 

Dimensions I and 2 are determined by 
low-frequency energy associated with 
voicing and nasality (compare Fig. 3A) 
or, in terms of acoustic events identi- 
fiable in the sound spectrograms (35), as- 
sociated with the temporal relations be- 
tween initial noise burst and onset of pe- 
riodic pulsing (dimension 1) and with 
transition in the lowest resonance or 

A 

"first formant" (dimension 2). Dimen- metric (r = 2) for perceptually "uni- 
sions 3 and 4, by contrast, are deter- tary" stimuli such as homogeneous col- 
mined by higher frequency energy asso- ors, perceived similarities tend to con, 
ciated with transition in the middle reso- form to something closer to the "city- 
nance or second formant (dimension 3) block" metric (r = 1) for "analyzable" 
and extent of high-frequency "sh" noise stimuli such as geometrical shapes dif- 
characteristic of the sibilants /f,3/and to fering in perceptually distinct dimensions 
a lesser extent /s,z/ (dimension 4). The of size, orientation, and brightness (8, 
weights of the 17 conditions, plotted in 36). For Ekman's color data, Kruskal in 
the planes of the same pairs of dimen- fact obtained lowest values of stress 
sions (Fig. 3, E and F) corroborate this when r was close to 2 (18), while for 
interpretation: The low-pass conditions more analyzable stimuli better fits tend 
are more heavily weighted on the first to be obtained with r close to 1 (37). (An 
two dimensions, while the high-pass con- example of an r = I solution for the se- 
ditions are more heavily weighted on the mantic domain will be given later in this 
last dimension (34). article.) 

Spaces that are non-Euclidean in the 
sense of being globally curved though lo- 

Non-Euclidean Representations cally Euclidean also have been pro- 
posed-particularly for perceived colors 

The Shepard-Kruskal approach to (4), positions of luminous points (38), 
multidimensional scaling (16, 18) made and orientations in three-dimensional 
feasible, for the first time, the search for space (39). One step in the extension of 
solutions in non-Euclidean spaces. In his multidimensional scaling to such situa- 
improved program MDSCAL, for ex- tions has been based on an assumption 
ample, Kruskal (18) replaced the Eu- of constant curvature (40). Another ap- 
clidean distance formula with the more proach has sought to simplify the prob- 
general Minkowski r-metric formula lem of interpreting globally curved struc- 

tures by mapping them down into a flat 

d j E Ik _ Ir (7) Euclidean space of the same "intrinsic 

kj = I X iJ dimensionality" (20, 39, 41). Figure 4 
shows results that Carroll, Chang, and I 

The family of r-metrics had been of inter- obtained in tests with artificial similarity 
est to students of perception because of data derived from distances between 
indications that whereas perceived simi- points on the surface of a sphere. We ob- 
larities conform to the locally Euclidean tained the flat two-dimensional solutions 
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by iterative procedures that (in Fig. 4A) 
minimized Carroll's index of departure 
from smoothness or continuity of the 
mapping, and (in Fig. 4B) minimized the 
Shepard-Chang measure of departure 
from local monotonicity. Both proce- 
dures yield a parametric representation 
in an appropriately reduced space, and 
the second tends to be conformal. 

Nondimensional Scaling 

In some applications our primary in- 
terest is in determining the functional 
form of the relation between similarity 
and distance; for example, whether that 
form is exponential for confusion data 
(13) and hyperbolic for discrimination 
times (42). Accordingly, Cunningham 
and I developed a method of nondimen- 
sional scaling, which used a gradient- 
projection method to find distances, dij, 
in a completely general, coordinate-free 
metric space, that are as nearly as pos- 
sible monotonically related to the given 
similarity data, sij. In order to obtain so- 
lutions that achieved an acceptable fit 
but that were, at the same time, as far as 
possible from the trivial and degenerate 
one with all points equally distant from 
each other, which in multidimensional 
scaling is ruled out by minimizing the 
number of dimensions, we had to maxi- 
mize the variance of the distances. The 
only other condition on the distances (a 
condition that we imposed by a "penalty 
function") was that they satisfy the three 
distance axioms (Eqs. 2a, 2b, and 2c) 
[see (43)]. 

We found that we could accurately re- 
cover the nonlinear shape of the function 
used to generate artificial similarity data 
even though the program was provided 
no information about either the type of 
metric or the form of the function. By 
contrast, an MDSCAL solution failed to 
recover the form of the function when 
the data were derived from very non-Eu- 
clidean sum-over-path distances in a 
tree. Figure 4C shows the results ob- 
tained when we applied this program to 
the Morse code data of Fig. ID. Without 
assuming anything about the nature of 
the underlying, metric, we recovered a 
function essentially like the one I origi- 
nally obtained on the assumption of a 
Euclidean metric (24). And, again, the 
relation is in rough agreement with a 
simple negative exponential function 
(the one-parameter fitted curve). 

This method is nondimensional rather 
than multidimensional, because it does 
not furnish coordinates for a visualizable 
configuration of the stimuli. However, 
maximization of the variance of the dis- 
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Fig. 5. Additive tree N 
obtained by analysis Bear B 
of Henley's data on 
the conceptual simi- 
larities between 30 
species of animal, em- 
bedded in a two-di- 
mensional space. [Re- Elephant 
arranged from Sattath ( 
and Tversky (47)] 
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tances tends to drive the distances in 
every triangle toward the limiting addi- 
tive case of the triangle inequality. 
(That is, Eq. 2c tends toward Eq. 3.) 
Hence, it is tempting to take the addi- 
tional step of representing the distances 
as additive paths through a visualizable 
tree or graph (44). 

Fitting Additive Trees 

Procedures for fitting additives or 
path-length trees to similarity data were 
soon devised by Cunningham (45), Car- 
roll and Chang (46), and Sattath and 
Tversky (47). An additive tree is a graph 
without any closed loops, in which the 
distance between any two nodes is given 
by the sum of the lengths of the links in 
the unique path between those nodes. 
The procedures for fitting such trees 
were based on the replacement of the tri- 
angle inequality by the stronger, four- 
point additivity condition 

dhi + djk < max {(dhj + dik), 
(dhk + d1j)} (8) 

The resulting tree has N external nodes 
for the N stimuli, and the lengths of all 
connecting links are then estimated to 
minimize a least-squares measure of de- 
parture from good fit. Basically these 
methods are metric in that they treat the 
data as linearly related to underlying 
path-length distances. However, such 
distance-like data, if not initially avail- 
able, could be obtained from similarity 
data by first applying Cunningham-Shep- 
ard maximum variance nondimensional 
scaling. 

Figure 5 shows the additive tree that 
Sattath and Tversky (47) obtained by ap- 
plying their program ADDTREE to Hen- 
ley's (48) judged semantic dissimilarities 

between 30 animal terms. I have ar- 
ranged the branches in Fig. 5 so that the 
terminal nodes approximate the posi- 
tions of the corresponding points in a 
multidimensional scaling solution for 
these same data. The major branches of 
the tree roughly correspond to apes, ro- 
dents, carnivores (both canines and fe- 
lines), and large herbivores (hoofed ani- 
mals and elephant). Perhaps trees or 
graphs are particularly well suited to the 
representation of semantic structures. 
Sattath and Tversky reported that the 
original dissimilarity data were more 
closely fitted by path-length distances in 
the tree (stress = .07, r = .91) than by 
distances in a two-dimensional Euclid- 
ean representation requiring about the 
same number of parameters (stress = 
.17, r = .86). 

Hierarchical Clustering 

The designation of one internal node 
as the "highest" node in an additive tree 
confers on every other node a derivative 
height by virtue of its distance from the 
designated node. The tree thereby be- 
comes a hierarchical clustering. If all ter- 
minal nodes are equally distant from the 
highest node, the distance between ter- 
minal nodes is then given simply by the 
height of the highest node on the con- 
necting path. Hence the hierarchical tree 
metric is a special case of the additive 
tree metric. In fact, as was indepen- 
dently shown by several workers in 1967 
(49-51), the hierarchical tree metric 
is governed by the "ultrametric" in- 
equality 

di -< max (dih, dhj) (9) 

which requires that all "triangles" be 
isosceles. Both nonmetric methods (49, 
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50) and least-squares metric methods 
(46, 51) have been devised for fitting 
such hierarchical tree structures to simi- 
larity data. 

Figure 6A shows the hierarchical tree 
that I obtained by reanalyzing the aver- 

age of Miller and Nicely's confusion ma- 
trices for unfiltered consonants, using 
the "diameter" (or "complete-link") 
variant of the nonmetric method of hier- 
archical clustering developed by my co- 
worker S. C. Johnson (26, 50). In Fig. 

6B, I have embedded the clusters corre- 
sponding to cuts through this tree at rep- 
resentative levels as closed curves in the 
earlier spatial solution (Fig. 3A). The 
compatibility of the spatial and heir- 
archical representations is manifested in 
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Fig. 6. Alternative clustering analyses of Miller and Nicely's (25) data on confusions of 16 consonants. (A) Hierarchical tree obtained by using 
Johnson's (50) nonmetric "diameter" (or "complete-link") method. (B) The same hierarchical clustering displayed as embedded in the two- 
dimensional scaling solution of Fig. 3A. [From Shepard (26)] (C) Nonhierarchical clustering obtained by ADCLUS analysis of the same data, 
embedded in the same two-dimensional scaling solution. The Arabic numerals indicate the ranks of the clusters by estimated weights. [From 
Shepard and Arabie (52)] 
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Fig. 7. Alternative clustering analyses of Miller's data on the semantic relationships between 20 names of parts of the body. (A) Hierarchical tree 
with stimuli assigned to internal as well as terminal nodes. The numbers attached to the internal nodes indicate their estimated heights in the 
hierarchy. [Rearranged from Carroll (46)] (B) Additive clustering obtained by ADCLUS analysis of the same data, embedded in a two-dimension- 
al projection of the three-dimensional "city-block" solution (r = 1). The Arabic numerals indicate the ranks of the clusters by estimated weights. 
The "trunk" words, enclosed in dashed curves, fall in the back (-, -, -) orthant of the three-dimensional space. [From Shepard and Arabie (52)] 
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the compact and convex forms of the 
nested curves. However, each of the two 
types of representation brings out dif- 
ferent aspects of the underlying struc- 
ture. Only the continuous, spatial repre- 
sentation preserves the parallel order- 
ings of the voiceless and the voiced frica- 
tives /f,O,s,f/ and /v,3,z,3 /with respect 
to place of articulation and, hence, rep- 
resents such facts as that the middle 
fricatives (for example, /0/ and /s/) are 
more often confused than the extreme 
fricatives (for example, /f/ and lf/). But 
only the discrete, clustering representa- 
tion, separately obtained for each of 
Miller and Nicely's 17 conditions, re- 
veals that whereas the front voiceless 
stop /p/ clusters with the other voiceless 
stops /k,t/, the corresponding front 
voiced stop /b/ uniformly groups with the 
front voiced fricatives /v,a/ rather than 
with the other voiced stops /d,g/. Evi- 
dently, place of articulation was more 
salient than presence or absence of af- 
frication for voiced consonants, while for 
the voiceless consonants absence of af- 
frication became more salient owing to 
the correlated presence of an initial 
burst, which appears at the left in the 
spectrograms for /p,t,k/ in Fig. 2. 

In semantic studies, superordinate 
words might reasonably be represented 
by internal nodes ;n the tree. Carroll and 
Chang developed a combinatorial opti- 
mization procedure for least-squares fit- 
ting of such a hierarchical model (46). 
Figure 7A snows the solution that they 
obtained from an analysis of semantic 
similarities that Miller had obtained for 
20 names of body parts (46). This repre- 
sentation accounted for 92.7 percent of 
the variance with only five continuous 
parameters; namely, the height values 
for each of the five internal nodes of the 
tree. The semantic hierarchy seems to be 
well recovered, with "body" dominating 
"leg," "arm," "head," and "trunk," 
and with each of these dominating, in 
turn, the appropriate set of more subor- 
dinate terms. 

Additive Clustering 

Sometimes we would not want the 
psychologically significant subsets of the 
stimuli to be nested in a strictly hierarch- 
ical fashion. While the kin terms "fa- 
ther" and "mother" should be classified 
together in contrast to "son" and 
"daughter" on the basis of generation, 
the terms "mother" and "daughter" 
should be classified together in contrast 
to "father" and "son" on the basis of 
sex. But these two cross-cutting classifi- 
cations cannot be simultaneously accom- 
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modated within any one hierarchical rep- of the three-dimensional city-block solu- 
resentation. To deal with such cases, tion that Arabie obtained for these same 
I developed with Arabie a nonhierarchi- data using MDSCAL. (For these data, 
cal method of additive clustering AD- the residual stress was .019 for r = 1, as 
CLUS, which differs from all of the more opposed to .046 for the Euclidean r = 2.) 
or less spatial representations in that it is An advantage to be expected for such a 
not based on any notion of distance (20, non-Euclidean solution is that the or- 
52, 53). thogonal axes I, II, and III correspond, 

The basic idea behind additive cluster- without rotation, to the immediately in- 
ing is that the perceived similarity be- terpretable "leg," "arm," and "head" 
tween any two stimuli is simply the sum clusters. As before, the Arabic number 
of positive psychological weights, wk, of within each subset indicates its rank with 
the discrete properties that both stimuli respect to weight (ranging from .820 to 
have in common. Formally, .119). When the entire set is included 

K (with a weight of .048), 95.6 percent of 

Sij = WkPikPik the variance is accounted for by these 
k= 1 (lOa) subsets. In comparison with the hier- 

archical representation obtained by Car- 
where roll and Chang (Fig. 7A), the ADCLUS 

I if object i has property k, representation fails to represent the su- 
Pik = 

0 otherwise. (lOb) perordinate status of some of the terms 
explicity. It does, however, provide an 

If it were not for the restriction that the explicit representation of the nonhierar- 
Pik be binary valued, the model would be chical overlap of certain of the subsets. 
essentially identical to that of factor Most significant among the overlapping 
analysis, which Ekman (22) had assumed subsets are subset 10, which connects 
to be suitable for the representation of the functionally analogous "elbow" and 
continuous structures in similarity data. "knee" parts of the "arm" and "leg" 
However, the imposition of this binary subsets, and subset 5, which, in the 
restriction converts the problem of com- words of the Negro spiritual, confirms 
puting the eigenvalues and vectors of the that, indeed, "the head bone is con- 
similarity matrix into a more difficult nected to the neck bone." 
combinatorial problem of finding the 
smallest set of weighted subsets that will 
provide a satisfactory additive fit to the Concluding Remark 
data (52). 

Figure 6C displays the subsets ob- It would be a mistake to ask which of 
tained when we applied ADCLUS to the these various scaling, tree-fitting, or 
Miller-Nicely data (25) on confusions be- clustering methods is based on the cor- 
tween 16 consonants, embedded in the rect model. As even my small sample of 
previous two-dimensional scaling solu- illustrative applications indicates, dif- 
tion (see Figs. 3A and 6B). With these 16 ferent models may be more appropriate 
subsets and the entire subset of all 16 for different sets of stimuli or types of 
consonants, the additive model was able data. Even for the same set of data, 
to account for 94.5 percent of the vari- moreover, different methods of analysis 
ance. The Arabic number in each subset may be better suited to bringing out dif- 
indicates the rank of that subset accord- ferent, but equally informative aspects of 
ing to its estimated weight (ranging from the underlying structure (54). 
.730 to .009). The subsets in the additive 
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