
upon long-term exposure (11). We know 
of no direct evidence for the carcinogen- 
icity of HZ in humans (12), although spe- 
cific epidemiologic studies are not avail- 
able (13). Both HZ and its metabolites 
are rapidly excreted, primarily in the 
urine (14). An important enzyme in the 
metabolism of HZ is N-acetyltransferase 
(NAT) (15), which has a polymorphic 
distribution in humans (16), individuals 
being either rapid or slow acetylators. 
The development of HZ toxicity (17) 
seems to be more frequent in slow acety- 
lators (18). Therefore, we examined the 
relationship between the genotoxicity of 
HZ and NAT activity in hepatocytes iso- 
lated from rats and from rabbits, a spe- 
cies exhibiting an acetylator polymorph- 
ism like that of humans (19). In rat or 
slow acetylator rabbit hepatocytes, the 
half-life of sulfamethazine, the substrate 
for NAT used in determining acetylator 
phenotype, was similar and over 15 
times that of rabbit hepatocytes from a 
rapid acetylator (20). We found that HZ 
was genotoxic in rabbit hepatocytes with 
a slow rate of acetylation but not in those 
with a rapid rate of acetylation (20), al- 
though all hepatocyte preparations re- 
sponded to the positive control aromat- 
ic amine carcinogen 2-aminofluorene. 
These observations suggest that rapid 
acetylation may diminish the genotoxic 
effect of HZ. Thus, slow acetylators in 
the human population may be more sus- 
ceptible to the genotoxic effects of these 
hydrazine drugs. We conclude that HZ 
and DHZ are potential human carcino- 
gens and that evidence for or against 
their actual carcinogenicity must be vig- 
orously pursued. 
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Genetic Mosaics of Caenorhabditis elegans: A Tissue-Specific 
Fluorescent Mutant 

Abstract. Genetic mosaics can be generated by x-irradiation in the simple nema- 
tode Caenorhabditis elegans. A mutation in the gene flu-3 alters the characteristic 
autofluorescence of intestinal cells under ultraviolet light and can be used as a cell- 
and tissue-specific marker. Embryos heterozygous for flu-3 give rise to adults with 
patches of these altered intestinal cells. The previously established intestinal cell 
lineage in Caenorhabditis elegans and the distribution and sizes of the fluorescent 
patches are consistent with a somatic segregation of the flu-3 allele. 
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Genetic mosaics are useful for study- 
ing cell lineage and cellular interaction 
in development (1). Several interesting 
problems in development such as the 
construction of fate maps, estimation of 
number of primordial cells, analysis of 
cell differentiation, pattern formation, 
sex-determination, and behavior have 
been studied by means of mosaics and 
chimeras in Drosophila and mouse (2). 
The free-living soil nematode Caenor- 
habditis elegans, with its simple cellular 
anatomy, is particularly amenable to ge- 
netic manipulation (3, 4). Here we dem- 
onstrate the use of a fluorescent marker 
to detect genetic mosaics in the intestinal 
tissue of C. elegans. A mutation in the 
gene flu-3 gives rise to an altered in- 
testinal autofluorescence which is both 
purple and more intense than that of the 
wild type. The mutant fluorescent 
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phenotype is fully recessive with respect 
to the wild type (5, 6). 

Developing embryos heterozygous for 
the fluorescent marker were exposed to 
x-irradiation in the hope that it would en- 
hance the frequency of mosaics, since 
we did not observe any spontaneous oc- 
currence of mosaics among about 20,000 
unirradiated heterozygous flu-3 animals. 

Males homozygous for the recessive 
fluorescent marker flu-3 (t301)II were 
crossed with dumpy hermaphrodites 
dpy-5(e61)I so that we would be able to 
distinguish heterozygous outcross prog- 
eny from any hermaphrodite progeny 
produced by self-fertilization (3). The 
non dumpy progeny resulting from 
cross-fertilization are heterozygous for 
both the morphological dpy marker and 
for the fluorescent markerflu-3. They are 
easily distinguishable from the dumpy 
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Table 1. Frequency and size of the mosaic fluorescent patches with respect to the age of the embryo when irradiated. 

Number of Number of Frequency of the Type of patch* 
when x-irradiated heterozygotes flu-3 patches flu-3 patches 

screened observed observed (%) WI AHI PHI SmI 

Irradiated inside the hermaphrodite 97,212 62 0.06 18 25 19 
0 to 2 hours after egg was laid 25,544 4 0.02 4 
2 to 4 hours after egg was laid 4,416 2 0.05 2 
4 to 6 hours after egg was laid 3,120 1 0.03 1 
Young larvae (stages I or 2) 4,200 

*Abbreviations: WI, whole-intestine mosaic; AHI, anterior half-intestine mosaic; PHI, posterior half-intestine mosaic; SmI, small fluorescent patch in the intestine. 
Each animal was removed from the petri plate after examination to avoid duplicate scoring of the heterozygotes. 

progeny resulting from self-fertilization. 
The mated dumpy hermaphrodites, con- 
taining heterozygous embryos, were x- 
irradiated with 2000 rads at a dose rate of 
about 200 rad/min (Andrex x-ray ma- 
chine, Model 4200) in a petri plate on the 
surface of NG agar covered with a thin 
lawn of Escherichia coli OP50 (3). After 
x-irradiation, the animals were trans- 
ferred individually to fresh petri plates 
and allowed to lay eggs. These plates 
were incubated at 25?C for 2 to 3 days, 
until the irradiated embryos matured into 
adult animals. The non dumpy animals 
(heterozygotes) were scored under ul- 
traviolet light (300 to 400 nm) for the ap- 
pearance of fluorescent patches in the in- 
testine. 

The animals were x-irradiated at dif- 
ferent stages of development in the hope 
that different patterns of mosaicism 
would be induced. Embryos in the early 
phase of development (up to about the 
50-cell stage) were irradiated while still 
inside the mother, and late embryos (be- 
tween about the 50-cell stage and hatch- 
ing) after the eggs had been laid. Three 
different types of fluorescent patches 
were observed (Fig. 1). Their quan- 
titative distribution varied with the age 
of the embryos at the time of x-irradia- 
tion (Table 1). Out of 97,212 hetero- 
zygotes, 62 animals that were irradiated 
during the early stages of embryonic de- 
velopment (from zygote formation to the 
time when the egg is laid) showed fluo- 
rescent patches. Of these animals, 18 
(about 30 percent) were so-called 
"whole-intestine" mosaics; the fluores- 
cent patch covered the entire intestine, 
so that the intestinal fluorescence of 
these heterozygous animals resembled 
that of homozygous animals but was 
more intense than wild type. The remain- 
ing 44 animals were "half-intestine" mo- 
saics. In 25 (40 percent) of these, the an- 
terior half of the intestine was fluores- 
cent, whereas in the other 19 (30 
percent), the posterior half was fluores- 
cent. In this category there was no ani- 
mal with a small fluorescent patch. 

No whole-intestine nor half-intestine 
mosaics were observed when eggs were 
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x-irradiated from 0 to 2 hours after they 
had been laid. However, four animals 
with small fluorescent patches were ob- 
served; two had patches in the most an- 
terior region of the intestine and the oth- 
er two in the most posterior region. Simi- 
larly, eggs that were irradiated 2 to 4 
hours after being laid produced two ani- 
mals with small fluorescent patches in 
the most anterior region of the intestine. 
Again, in this later category there was no 
animal with a whole-intestine or half-in- 
testine mosaic. 

Except in one animal, the mosaic 
patches continued to show theflu-3 fluo- 
rescence during the life of each animal. 
In the one exception, the animal showed 
a very small patch of fluorescence (pre- 
sumably involving only 1 or 2 cells) in 
the most posterior region of the intestine 
which gradually decreased in intensity 
and in 2 days was reduced to the in- 
tensity of the wild type. 

To establish the presence of the flu-3 

gene in the fluorescent mosaics, x-irra- 
diated control heterozygous embryos 
(not containing the mutant flu-3) were 
generated by crossing wild-type males 
with dumpy hermaphrodites. About 
13,000 animals were screened for mo- 
saicism, but none was found. Thus, un- 
der the conditions we used, there does 
not seem to be any developmental anom- 
aly which mimics theflu-3 mutant pheno- 
type. 

The observed mosaic patches fit the 
lineage of the embryonic E cell (the pre- 
cursor of the intestine) (7). The first divi- 
sion of the E cell generates an anterior 
(E.a) and a posterior (E.p) daughter, the 
precursors for the anterior and posterior 
intestine, respectively. These continue to 
divide to give eight descendants each. 
The observed patches in the anterior or 
posterior halves of the intestine are con- 
sistent with this lineage. Two of the re- 
maining four embryonic divisions (to 
give 20 intestinal cells at hatching) occur 
at the anterior end of the intestine and 
the other two at the posterior end (8). 
The patches at the anterior or posterior 
ends of the intestine are also consistent 
with this lineage. When young larvae 
(stages 1 and 2) were irradiated, no fluo- 
rescent patches were observed. This is 
as expected because, although the num- 
ber of intestinal nuclei increases from 20 

Fig. 1. Fluorescent patches induced by x-irra- 
diating embryos heterozygous for the flu-3 
marker. (A) Whole-intestine mosaic. The dis- 
tribution of the autofluorescence is identical 
to that in an animal homozygous for the flu-3 
mutation. (B) Half-intestine mosaic. The ante- 
rior half shows the characteristic flu-3 au- 
tofluorescence while the posterior half of the 
intestine shows the wild-type fluorescence. 
(C) A small patch of intestinal mosaicism. 
Such small patches were always restricted to 
either the anterior most cells as shown here or 
to the posterior most cells of the intestine. 
The exact number of cells forming the fluores- 
cent patches has not been determined. These 
photomicrographs were made in epifluores- 
cence under ultraviolet light in the range of 
300 to 400 nm, with a Zeiss Universal Pho- 
tomicroscope equipped with an exciting filter 
(UG1/UG5) and a barrier filter No. 487709. 
The original color photomicrographs were on 
Kodachrome (160 ASA). 

331 



to 34 during postembryonic develop- 
ment, the intestinal cells themselves ap- 
parently do not divide (9). 

The x-irradiation could also have af- 
fected the development of the animal. 
For instance, x-ray-induced death of 
cells followed by cell rearrangements 
could affect the size and shape of the flu- 
orescent patches, and Sulston (10) has 
found that intestinal cells can function- 
ally regulate for the loss of neighboring 
ititestinal cells by expansion, without un- 
dergoing compensatory divisions. How- 
ever, all the fluorescent patches we ob- 
served fit the known E cell lineage, in- 
dicating such artifacts apparently did not 
occur under our conditions. 

About 70 percent of the mosaic ani- 
mals were sterile. This infertility might 
have been due to the x-irradiation or to 
the intense ultraviolet light to which the 
animals were exposed when they were 
examined for fluorescence. However, 
the remaining 30 percent that were fertile 
gave rise to dumpy, fluorescent, and 
wild-type animals in about Mendelian 
proportions (1: 1: 2), suggesting that the 
germ cells of the mosaic animals were 
heterozygous for the flu-3 and the dpy 
markers. The fluorescent patches in- 
dicate a somatic segregation of theflu al- 
lele in the intestinal lineage and autono- 
mous expression of the mutant flu-3 
character. The mosaics could arise by a 
variety of mechanisms, such as chromo- 
some elimination, somatic mutation, 
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expressed only in the intestinal tissue 
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for these diseases are highly toxic (1) and 
induce drug resistance, and no new drug 
has been introduced in the last 25 years 
(2). We have found that a highly specific 
inhibitor of polyamine biosynthesis, a- 
difluoromethylornithine (DFMO, RMI 
71,782), blocks multiplication of the 
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Table 1. Effects of DFMO on T. b. brucei infection in mice. Groups of five animals (20 to 25 g) 
were inoculated with T. b. brucei (EATRO 110 isolate; 5 x 105 organisms per animal). Treat- 
ment was begun 24 hours after infection. Results are expressed as average survival (in days) 
beyond death of control based on an average control survival of 5 days. Berenil (diminazene 
aceturate) is included as a control trypanocide. The drinking water containing DFMO or a- 
methylornithine was constantly available. 

Total Average 
Drug and treatment regimen dose* survival 

(mg) (days) 

None 0 0 
a-DFMO in drinking water 

2.0 percent for 6 days 600 > 30t 
2.0 percent for 3 days 300 > 30 
1.0 percent for 6 days 300 > 30 
1.0 percent for 3 days 150 > 30 
0.5 percent for 3 days 75 28.6 
0.1 percent for 3 days 15 2 

a-DFMO by intubation 
300 mg/kg daily for 3 days 22.5 26.3 
150 mg/kg daily for 3 days 11.3 22.8 
75 mg/kg daily for 3 days 5.6 19.2 
50 mg/kg daily for 3 days 3.8 0 

a-methylornithine in drinking water 
2.0 percent for 3 days 300 0 

Berenil injected intraperitoneally 
2.5 mg/kg daily for 3 days 0.2 > 30 

*The dose administered in drinking water was calculated on the basis of a daily intake of 5 ml of water per 25-g 
mouse per day. tConsidered curative. Animals survived more than 1 month beyond controls; blood 
smears were negative for parasites after I month. Uninfected mice inoculated with brain suspensions from 
cured animals remained free of disease for more than 30 days. 
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Polyamine Metabolism: A Potential Therapeutic 

Target in Trypanosomes 

Abstract. a-Difluoromethylornithine (RMI 71,782), a specific irreversible inhibitor 

of the first step in polyamine biosynthesis, that is, the formation of putrescine from 
ornithine by ornithine decarboxylase, cures mice infected with a virulent, rodent- 
passaged strain of Trypanosoma brucei brucei. This parasite is closely related to the 
trypanosomes that cause human sleeping sickness. The drug, which is remarkably 
nontoxic, was effective when administered in drinking water or by intubation. The 
ability of the compound to inhibit ornithine decarboxylase in vitro was demonstrated 
by the reduced amounts of putrescine synthesized from tritiated ornithine in Try- 
panosoma brucei suspensions. These observations direct attention to polyamine me- 
tabolism as a target for chemotherapy of parasitic diseases. 
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