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Episodic Ice-Free Arctic Ocean in Pliocene and 
Pleistocene Time: Calcareous Nannofossil Evidence 

Abstract. Today's ice cover (2 to 4 meters thick) over the Arctic Ocean provides a 
shadow that prevents coccolithophorids (photosynthetic, planktonic algae) from liv- 
ing there. Sparse, low-diversity, but indigenous coccolith assemblages in late Plio- 
cene to mid-Pleistocene (but not Holocene) sediments imply deep penetrating warm 
currents or an ice-free Arctic Ocean, or both, as those layers were being deposited. 
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The climatic history of the Arctic has 
been a matter of debate ever since the 
study of its sediments commenced. The 
early Soviet investigators (1), using 
"radium distribution," estimated that 
the rates of sedimentation were - 1.2 to 2 
cm per 103 years and interpreted the up- 
permost foraminiferal-silty layer (10 to 
15 cm thick), which covers vast areas of 
the sea floor, as representing postglacial 
deposits and the underlying foraminif- 
era-poor beds as representing colder, 
glacial sediments (1). However, uranium 
series isotope dates (2) and the magnetic 
stratigraphy of Lomonosov Ridge and 
Alpha Cordillera cores (3, 4) indicate 
that the sedimentation rates are only 1 to 
3 mm per 103 years. Herman (5, 6) has 
argued that the "foram-poor" layers 
deposited intermittently during the 
Brunhes magnetic epoch and throughout 
most of the Matuyama epoch represent 
milder periods than those of today, pos- 
sibly seasonally ice-free intervals. Clark 
(7), on the other hand, has held that the 
Arctic has been covered continuously 
with perennial sea ice from middle Ceno- 
zoic time to the present, and that the fo- 
ram-poor layers were not typical of inter- 
vals milder than the present but actually 
were laid down during times when the 
ice cover was thicker than today's, 
which ranges from 3 to 4 m at winter's 
end to 2 to 3 m at summer's end (8). 

Field observations and theoretical cal- 
culations indicate that sea ice reaches an 
equilibrium thickness at about 4 m (9). 
Furthermore, evidence exists for much 
drier climates during the peaks of glacial 
periods, probably due to a sharp drop in 
evaporation, reduced snowfall, and re- 
duced moisture when ice covered exten- 
sive land and ocean (10), precluding the 
existence of a thicker ice cover than 
today's. 
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We report here on the discovery of 
calcareous nannofossils (skeletal re- 
mains of planktonic unicellular photo- 
synthetic golden brown algae) in sedi- 
mentary cores from the crest and flank 
provinces of the Alpha Cordillera raised 
by Lamont-Doherty Geophysical Obser- 
vatory (LDGO) scientists, on drifting ice 
platforms (Table I and Fig. 1). This dis- 
covery supports the hypothesis of an epi- 
sodic warmer, possibly ice-free Arctic 
Ocean. Foraminiferal data and magnetic 
stratigraphy have been published (5, 6, 
11) for most cores. Within the time inter- 
val of - 4.5 x 106 years, recorded in the 
longest core, three major climatic re- 
gimes are recognized, represented here 
by climatic units I, II, and III (Fig. 1). 
Thirty-one samples taken from eight 
cores were examined, six of which con- 
tained nannofossils (Fig. 1); these sam- 
ples were selected from core tops and 
from downcore levels representative of 
the three climatic regimes. The earliest 
unit (III) consists of fairly well sorted 
manganese micronodule-bearing red 
clays with small but significant amounts 
of ice-rafted minerals (12). The plankton- 
ic foraminifera are dominated by polar, 
left-coiling Globigerina pachyderma 
complex, some of which are corroded. 
Benthonic foraminifera are represented 
by deep-water elements (5, 6). Neither 
coccoliths nor discoasters were found in 
these red clays. The boundary between 
units II and III coincides with the Gauss- 
Matuyama boundary (6, 11) (Fig. 1) and 
is defined by lithological and faunal 
changes. The change from "red clays" 
to tan silts with abundant coarse, ice- 
rafted debris is accompanied by faunal 
change. The planktonic foraminiferal 
fauna is dominated by the extant, solu- 
tion-susceptible Globigerina egelida and 
G. quinqueloba, which constitute up to 
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99 percent of the fauna of the shallower 
cores (< 2400 m). Today, G. egelida in- 
habits the Labrador Sea during summer 
and the North Atlantic slope water in 
winter (13). Elphidium, endemic to conti- 
nental shelves, constitutes up to 50 per- 
cent of the benthonic foraminiferal 
fauna, further evidence of the large-scale 
ice-rafting during the Matuyama. We be- 
lieve that these changes - 2.4 x 106 
years ago record a drastic alteration in 
the oceanographic regime, namely, the 
initiation of density stratification, a pre- 
condition for the formation of sea ice. 

One specimen each of Dictyococcites 
minutus, a small cosmopolitan species 
ranging from Eocene to Pleistocene, and 
Discoaster woodringi, a generalized Eo- 
cene to Pliocene representative of the 
thermophilic discoasters, were found in 
core T3-67-9 at 238 to 239 cm. They 
come from the same level in which 
warm-water planktonic foraminifera 
were found (5, 6, 11) and probably repre- 
sent Tertiary forms ice-rafted along with 
Elphidium spp. from shallow-water out- 
crops by drifting ice. The sediments of 
unit II were deposited during the Ma- 
tuyama epoch, a time of low global tem- 
peratures, milder than those of the fol- 
lowing Brunhes epoch (5, 6, 11, 14). The 
boundary between units I and II, defined 
by both faunal and lithological changes, 
occurs near the Brunhes-Matuyama 
boundary (Fig. 1). Five of the six nanno- 
fossiliferous samples are within unit I. 
Another climatic threshold was crossed 
about 0.9 x 106 years ago when peren- 
nial sea-ice cover developed over the 
Arctic Ocean, as indicated by the first 
occurrence of a "G. pachyderma-rich" 
layer similar to that being deposited 
today on the floor of the Arctic basin. 
Brunhes sediments are composed of al- 
ternating foram-rich and foram-poor lay- 
ers. We interpret the foram-rich layers as 
representing conditions similar to those 
prevailing today (perennial sea-ice cov- 
er) and the foram-poor layers as in- 
dicative of short, mild, possibly season- 
ally ice-free, lower salinity intervals, 
comparable to those of the Matuyama 
epoch. The planktonic fauna of unit I is 
dominated by the polar left-coiling G. 
pachyderma complex. However, G. 
quinqueloba, which is capable of with- 
standing low salinities, attains high fre- 
quencies near several of the boundaries 
between foram-rich and foram-poor lay- 
ers. Benthonic foraminifers are varied, 
and ice-rafted debris is scattered through- 
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Coccoliths occur very sparsely (-1 
per 104 silt-size grains) in five foram-poor 
layers and in one foram-rich sample tran- 
sitionally above a foram-poor bed (Fig. 
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Table 1. Locations, depths, and lengths of cores. For an index map, see (6). 

Core Latitude Longitude Depth Ler 
(m) (ci 

Dst A2 83?52'N 168?12'W 1521 2( 
Dst A4 84?21'N 168?49'W 2041 11 
T3-67-2 79?06.3'N 175?34'W 1982 31 
T3-67-3 79?11'N 175?09'W 2285 3E 
T3-67-4 79?22.7'N 174046'W 1760 2? 
T3-67-9 79?37.9'N 172?07'W 2237 35 
T3-67-11 79?34.9'N 172?30'W 2810 25 
T3-67-12 80?21.9'N 173?33'W 2867 3? 

1). They were not found in foram-rich 
(ice-covered) surface sediments. Four of 
the five coccolith-containing samples 
from this interval [Dst A2 (39 to 40 cm), 
T3-67-3 (112 to 113 cm), T3-67-9 (60 cm), 
and T3-67-2 (3 to 4 cm)] contain the ex- 
tant Pleistocene guide fossil Gephyro- 
capsa carribeanica, one of the most 
cold-tolerant and cosmopolitan species 
of the Pleistocene Gephyrocapsa com- 
plex (15). The youngest coccolith assem- 
blage occurs in core T3-67-2 (3 to 4 cm). 
The upper Pleistocene is missing in this 
case, so that the sample is mid-Brunhes 
in age (16). This is the only sample that 
contains the subarctic Coccolithus neo- 
helis, the temperate-subarctic C. pela- 
gicus, and the cosmopolitan Cyclococco- 
lithina leptopora. Samples Dst A2 (39 to 
40 cm), Dst A2 (45 to 46 cm), and T3-67-3 
(112 to 113 cm) also contain very small 
(< 2 gam) unidentified elliptical placo- 
liths. Two of the samples [Dst A2 (39 to 
40 cm) and T3-67-9 (60 to 61 cm)] also 
contain representatives of the Dictyo- 
coccites minutus complex [D. minutus 
and similar small (3 to 4 /m) placoliths 

(17)]. The published stratigraphic ra 
of the D. minutus complex is early 
cene through Pliocene (17), but Wors 
(18) noted similar forms in the north 
cific off Kamchatka in sediments of 
Pliocene age. Therefore, these cold- 
erant forms might have persisted into 
Pleistocene in polar seas where t 
have not as yet been searched 
Sample Dst A2 (45 to 46 cm), only 6 
below a sample with Pleistocene 
careous nannofossils, contains obviot 
displaced early- to mid-Cenozoic Re 
ulofenestra bisecta and early Ceno2 
Chiasmolithus sp., as well as the 
Cretaceous Broinsonia sp. in Brun 
sediments. As it contains no exclusiv 
Pleistocene coccoliths, ice-rafting of 
er shelf sediments is the likely source 
the nannofiora, as all are known fr 
higher latitudes (18). 

The discovery of sparse coccolith; 
Arctic basin deposits and in late Plioc 
and Pleistocene sediments and their 
sence from Recent sediments provi 
new support for Herman's hypothesis 
6, 11) of deeper penetration of low-I 
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Fig. 1. Nannofossils found in eight cores. Shaded areas represent the percentages of the mi< 
fauna, and white areas represent the clastic material in the coarse fraction (< 63 Em); X, coc 
liths looked for and not found; *, coccoliths found; E, Globigerina egelida zone. Pola 
epochs and absolute time scale plotted on right margin are modified from (4). Core depths 
given on the left margin. 

tude warm currents into the Arctic or of 

g an ice-free Arctic, or both, during peri- 
m) ods represented by the foram-poor 

zones. As these calcareous algae require 
16 sunlight to photosynthesize their food, a 
12 thick ice cover [such as exists today or 
30 thicker, as proposed by Clark (7)] would 
72 have precluded their survival in the Arc- 
56 tic Ocean. The ecologic tolerance of liv- 
50 
74 ing coccolithophorids suggests that sun- 

light, temperature, and salinity are the 
most important factors controlling their 
distribution, and that these three param- 

nge eters covary with latitude (15, 19, 20). 
Eo- However, the standing crop in the north 
sley Pacific subarctic province north of 50? 
Pa- (20) can be higher by as much as an order 
late of magnitude than for any other prov- 
-tol- ince. The occurrence of large popu- 
the lations of Coccolithus pelagicus, Cy- 
hey clococcolithina leptopora, and Emiliania 
for. huxleyi (19) in core-top sediment sam- 
cm ples in the Norwegian Sea north of the 
cal- Arctic Circle suggests that an appre- 
isly ciable fraction of high-latitude standing 
tic- crops can be preserved in underlying 
roic sediments. The large populations are at- 
late tributed to high nutrient levels produced 
thes by upwelling in these two areas (19, 20); 
rely light availability, and not temperature or 
old- salinity, is probably the controlling fac- 
e of tor in high-latitude coccolith distribu- 
rom tion. The low surface salinity (< 32 per 

mil) and temperature (< 5?C) of the sub- 
s in arctic Pacific and Norwegian Sea north 
ene of the Arctic Circle, where these species 
ab- have been found in great abundance in 
ides both the water column and surface sedi- 
(5, ments, further substantiate this conten- 

lati- tion. Therefore, although nannofossil 
species diversity decreases with latitude, 
populations do not and may in fact in- 
crease until very large, nearly mono- 
specific populations are attained north of 
the polar front. In view of this, only light 
remains to limit the distribution of these 
hardy forms, either in the form of Arctic 

5 
night (which seasonally limits popu- 
lations) or a perennial sea-ice shadow 

. (which totally limits them). It is evident 
X that overall coccolith accumulation has 
> been exceedingly low and irregular 
, throughout the Brunhes epoch. How- 

ever, our success rate in finding them 
< (6/31 or - 20 percent) suggests that future 

searching will probably reveal more oc- 
D currences. Furthermore, as corrosive 

deeper waters completely destroy indi- 
5 vidually settling coccoliths (20), the four 

indigenous assemblages we observed 
within the Brunhes interval must either 
have been rapidly transported from sur- 

cro- face-water to the sediment-water inter- 
rity face by fast-settling fecal pellets (20) or 
are have been ice-rafted into the area as con- 

stituents of larger sediment particles 
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gouged from Arctic Ocean shelf strata 
(21). We speculate that coccoliths may 
have accumulated relatively rapidly dur- 
ing intense blooms accompanying short 
warming events. Without bioturbation, 
the stratigraphic record of a recurring 
series of such events would resemble a 
varved sequence with each of the cocco- 
lith-rich layers being perhaps a fraction 
of a millimeter thick. However, bioturba- 
tion by bottom-dwelling organisms [per- 
haps to a depth of 30 cm subbottom (22)] 
would mix the thin coccolith-rich layer 
with thick sub- and superjacent cocco- 
lith-free layers, thereby greatly diluting 
the observed coccolith abundances and 
defocusing the stratigraphic record to a 
resolution of perhaps 50,000 years. The 
occurrence of rare specimens in transi- 
tion zones, between the foram-rich and 
foram-poor layers in cores T3-67-2 and 
T3-67-3, is attributed to vertical mixing 
in sediments by burrowing organisms 
and bottom currents. If these results are 
representative of Arctic sediments as a 
whole, the strong possibility exists that 
low-diversity populations of coccoliths 
have sporadically invaded the Arctic 
Ocean throughout the Cenozoic. A de- 
tailed study of these populations will 
provide a valuable tool with which to un- 
ravel the complex paleoclimatic history 
of the Arctic. 
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