
Teuchert's. Each of his inventories of a-emitters 
created by neutron capture was therefore re- 
duced by the ratio of the inventories (Teu- 
chert's/Riitten's) of the nearest precursor listed 
by both authors on the dominant neutron build- 
up chain leading to the isotope in question. This 
procedure leads to a slight overestimate of the 
HTGR spent fuel a-activity and 239Pu inventory. 

8. We ignore the fissile isotope 24'Pu here since it 
has such a short half-life (13 years). The critical 
spherical mass of 239Pu diluted with up to an 
equal amount of nonfissile 240Pu + 242Pu in a 
metallic a-phase surrounded by a thick uranium 
neutron reflector is 4 to 5 kg. The complete fis- 
sioning of 1 kg of heavy metal would yield ener- 
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The observed increase in atmospheric 
CO2 over preindustrial levels has been 
ascribed largely to burning of fossil fuels 
(1) and to forest clearing and burning (2). 
We examined the carbon dynamics of 
the southeastern United States over the 
past two centuries in order to estimate 
the presettlement carbon pool, docu- 
ment carbon losses from deforestation, 
and determine whether this region is a 
source or a sink of atmospheric CO2. 
Such reconstructions provide insight 
into the source or sink strength of the 
terrestrial biosphere through time and 
suggest a future trajectory of carbon dy- 
namics under given conditions of land 
use (3). 

U.S. agricultural census statistics (4) 
and forest survey records (5) provide 
data for determining changes in land use 
during the settlement of Alabama, Ar- 
kansas, Delaware, Florida, Georgia, 
Kentucky, Louisiana, Maryland, Missis- 
sippi, North Carolina, South Carolina, 
Tennessee, Virginia, and West Virginia, 
an area of 1,405,737 km2 (5), or 12 to 16 
percent of the world's temperate forest 
area (2). Before settlement (A.D. 1750) 
(Fig. 1), 91.6 percent of the land area of 
these states was forest, 3.8 percent was 
prairie, and 4.6 percent was marsh (6). 
Forests and native prairies were rapidly 
converted to agricultural land as settlers 
pushed the frontier westward during the 
late 1700's and early 1800's (4, 7). By 
1880, less than 35 percent of the South- 
east remained in virgin forest-principal- 
ly in the southern Appalachian Moun- 
tains, Mississippi River bottomlands, 
Ozark and Ouachita mountains of Ar- 
kansas, and Gulf Coastal Plain pinelands 
(8). The coastal plain and southern Ap- 

SCIENCE, VOL. 210, 17 OCTOBER 1980 

The observed increase in atmospheric 
CO2 over preindustrial levels has been 
ascribed largely to burning of fossil fuels 
(1) and to forest clearing and burning (2). 
We examined the carbon dynamics of 
the southeastern United States over the 
past two centuries in order to estimate 
the presettlement carbon pool, docu- 
ment carbon losses from deforestation, 
and determine whether this region is a 
source or a sink of atmospheric CO2. 
Such reconstructions provide insight 
into the source or sink strength of the 
terrestrial biosphere through time and 
suggest a future trajectory of carbon dy- 
namics under given conditions of land 
use (3). 

U.S. agricultural census statistics (4) 
and forest survey records (5) provide 
data for determining changes in land use 
during the settlement of Alabama, Ar- 
kansas, Delaware, Florida, Georgia, 
Kentucky, Louisiana, Maryland, Missis- 
sippi, North Carolina, South Carolina, 
Tennessee, Virginia, and West Virginia, 
an area of 1,405,737 km2 (5), or 12 to 16 
percent of the world's temperate forest 
area (2). Before settlement (A.D. 1750) 
(Fig. 1), 91.6 percent of the land area of 
these states was forest, 3.8 percent was 
prairie, and 4.6 percent was marsh (6). 
Forests and native prairies were rapidly 
converted to agricultural land as settlers 
pushed the frontier westward during the 
late 1700's and early 1800's (4, 7). By 
1880, less than 35 percent of the South- 
east remained in virgin forest-principal- 
ly in the southern Appalachian Moun- 
tains, Mississippi River bottomlands, 
Ozark and Ouachita mountains of Ar- 
kansas, and Gulf Coastal Plain pinelands 
(8). The coastal plain and southern Ap- 

SCIENCE, VOL. 210, 17 OCTOBER 1980 

gy approximately equal to the explosion of 
20,000 tons of high explosive [T. B. Taylor, 
Ann. Rev. Nucl. Sci. 25, 407 (1975)]. 

9. Some of the 238U is transmuted by neutron cap- 
ture and subsequent radioactive transformations 
into 239pu, some of which is fissioned in place. 
Thorium-232 is similarly converted into fissile 
233U. Pure 233U is weapons-usable but differs 
from 239PU in that, like 235U, it will be "isotopi- 
cally denatured" for nuclear-weapons purposes 
as a result of its dilution by the 238U in the fuel 
[see (1)]. 

10. See figure 7D1 in (2), p. S116. 
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palachian forests were logged between 
1880 and 1920 (9). Southeastern bot- 
tomland forests are expected to be con- 
verted largely to cropland before 1990 
(10). 

However, since 1950, clearing of the 
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Fig. 1. (A) Land-use history and (B) changes 
in total carbon for the southeastern United 
States, A.D. 1750 to 1977. The areas in forest 
and rainforest for 1950 are based on the natu- 
ral vegetation map of Shantz and Zon (6). The 
data for 1850 to 1950 are from (4), with im- 
proved farmland defined as cleared land in 
?pltivation or pasture and unimproved farm- 
land defined as including pastured and unpas- 
tued woodlots. The data for 1952 to 1977 are 
based on inventories by the U.S. Forest Serv- 
ice (5), with the nonfarm secondary forest cat- 
egory including commercial forests in national 
and state forests, paper and lumber company 
holdings, and other private ownerships (ex- 
cluding farmland). 
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bottomlands has been offset by upland 
old-field succession, particularly in the 
Piedmont (11). Intensively managed 
commercial (secondary) forest holdings 
have increased in size as farm woodlots 
have diminished (Fig. 1). Today, virgin 
forests occupy less than 1 percent of 
their former area (Fig. 1), persisting only 
in small isolated stands. 

Estimates of timber volume for virgin 
forests of 1880 (8) and for secondary for- 
ests of 1952, 1962, 1970, and 1977 (5) 
were used to estimate total live (above- 
ground and belowground) biomass and 
total carbon (including detrital soil car- 
bon) on forested land (12). The above- 
ground biomass of the virgin forests av- 
eraged 343 Mg/ha, total live biomass was 
estimated as 460 Mg/ha, and total carbon 
averaged 327 Mg/ha (12). The above- 
ground biomass figure, estimated from 
Sargent (8), is less than that estimated by 
Whittaker (13) for undisturbed cove 
hardwood forests (500 to 600 Mg/ha), but 
greater than that for old-growth com- 
mercial forests of the southern Appala- 
chians (176 Mg/ha) (14). The cove forests 
examined by Whittaker represent an up- 
per limit, a potential not attained uni- 
formly across the presettlement land- 
scape because of various disturbances 
(15). Biomass on agricultural land was 
calculated by using the production val- 
ues of DeSelm (16). Land clearing and 
cultivation were estimated to diminish 
soil carbon by 40 percent (16, 17). 

From 1750 to 1960, total carbon in soil 
and vegetation decreased nearly linearly 
from 43.3 to 15.1 Gton (Fig. 1 and Table 
1). Replacement of nearly 55 percent of 
the original forest land with secondary 
forests did not restore carbon reserves 
depleted by extensive agricultural utili- 
zation over that 210-year period. With an 
average release of 0.13 Gton of carbon 
per year (Table 1), the southeastern 
United States has served as a major car- 
bon source to the atmosphere during 
most of the time since the Industrial 
Revolution. 

Between 1952 and 1977, the above- 
ground biomass on commercial forest 
land increased from 53.2 to 72.2 Mg/ha 
(5). This gain reflects the increase in 
holdings of intensively managed forest 
land (Fig. 1), on which net annual growth 
has increased due to reforestation of 
nonstocked areas and control of species 
composition and stand density (10). In- 
creased storage of wood in planted or 
early successional commercial forest 
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Table 1. Carbon in gigatons for virgin forest, secondary forest, and nonforest land of the south- 
eastern United States, A.D. 1750 to 1977, with projections to 2030. 

Second- Non- Carbon 
Year Virgin fo t Total flux 

forest oresty forest carbon (gigatons forest land 
per year) 

1750 42.6 0.0 0.7 43.3 _ -0.13 1850 23.4 5.8 1.6 30.8 0. 
1860 17.8 7.3 2.0 27.1 0.0 
1870 16.7 8.2 1.8 26.7 1 
1880 15.3 7.9 2.2 25.4 -0. 
1890 12.5 8.3 2.5 23.3 -01 
1900 10.0 8.8 2.8 21.6 -0.18 1910 7.4 9.5 2.9 19.8 
1920 4.9 10.3 3.0 18.20.1 -0.14 1930 2.6 11.2 3.0 16.8 _007 
1940 1.2 12.0 2.9 16.1 
1950 0.7 11.0 3.5 15.2 -00 
1960 0.5 11.2 3.4 15.1 
1970 0.5 11.5 3.5 15.5 + 

+0.07 1977 0.5 12.0 3.5 16.0 
2030* 0.5 15.8 3.5 19.8 +0.07 
2030t 0.5 10.8 4.0 15.3 -0.01 

Net change 
1750-1960 -42.1 +11.2 +2.7 -28.2 -0.13 
1960-1977 0.0 + 0.8 +0.1 + 0.9 +0.05 
1960-2030* 0.0 + 4.6 +0.1 + 4.7 +0.07 
1977-2030t 0.0 - 2.8 +0.5 - 0.7 -0.01 

*Assuming that the land area of virgin and secondary forests and nonforest land is the same as in 1977 and 
that productivity of commercial (secondary) forests increases at the same rate as in 1970 to 1977 (1.78 Mg of 
live biomass per hectare per year). tAssuming that the land area of virgin forest is the same as in 1977, 
that the area of secondary forest decreases by 10 percent as cultivated and urban land increases, and that 
productivity of commercial forests remains at 1977 levels. 

flux. Explicit treatment of the proportion 
of wood carbon in such products as pa- 
per and lumber would slightly lower the 
estimated loss of biospheric carbon to 
the atmosphere before 1950 and would 
increase the net gain after 1950 (19). 

Since at least 1960, the Southeast has 
functioned as a carbon sink (Fig. 1 and 
Table 1). These results support the con- 
tention of Armentano and Ralston (18) 
that forests in eastern North America 
today are sinks for carbon rather than 
sources. However, in the Southeast, on- 
ly 0.07 Gton of carbon is being restored 
annually, or half the rate at which it was 
lost. This amounts to a recovery thus far 
of only 3.1 percent of the carbon lost 
from 1750 to 1950. 

The balance between source and sink 
is sensitive to changes in land use. Under 
the assumptions given in Table 1 (foot- 
notes), a 10 percent decrease in the area 
of commercial forests changes the 
Southeast from a carbon sink to a small 
source. Only with sustained high produc- 
tivity, stabilization or increase in com- 
mercial forest area, and greater net 
growth can the terrestrial system of the 
Southeast continue to gain carbon. 

Change in land use is the dominant 
factor controlling the carbon budget (3). 
Because of the difference in biomass be- 
tween virgin and secondary forests, 
managed reforestation can never com- 
pletely offset the losses incurred by ini- 
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tial deforestation. However, carbon loss 
resulting from deforestation of one area 
could be offset by reforestation else- 
where. Until these forest growth pat- 
terns are known for specific regions, 
there is no basis for a final judgment on 
whether the terrestrial biosphere is act- 
ing as a source or sink for atmospheric 
CO2. 
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Episodic Ice-Free Arctic Ocean in Pliocene and 
Pleistocene Time: Calcareous Nannofossil Evidence 

Abstract. Today's ice cover (2 to 4 meters thick) over the Arctic Ocean provides a 
shadow that prevents coccolithophorids (photosynthetic, planktonic algae) from liv- 
ing there. Sparse, low-diversity, but indigenous coccolith assemblages in late Plio- 
cene to mid-Pleistocene (but not Holocene) sediments imply deep penetrating warm 
currents or an ice-free Arctic Ocean, or both, as those layers were being deposited. 

Episodic Ice-Free Arctic Ocean in Pliocene and 
Pleistocene Time: Calcareous Nannofossil Evidence 

Abstract. Today's ice cover (2 to 4 meters thick) over the Arctic Ocean provides a 
shadow that prevents coccolithophorids (photosynthetic, planktonic algae) from liv- 
ing there. Sparse, low-diversity, but indigenous coccolith assemblages in late Plio- 
cene to mid-Pleistocene (but not Holocene) sediments imply deep penetrating warm 
currents or an ice-free Arctic Ocean, or both, as those layers were being deposited. 

The climatic history of the Arctic has 
been a matter of debate ever since the 
study of its sediments commenced. The 
early Soviet investigators (1), using 
"radium distribution," estimated that 
the rates of sedimentation were - 1.2 to 2 
cm per 103 years and interpreted the up- 
permost foraminiferal-silty layer (10 to 
15 cm thick), which covers vast areas of 
the sea floor, as representing postglacial 
deposits and the underlying foraminif- 
era-poor beds as representing colder, 
glacial sediments (1). However, uranium 
series isotope dates (2) and the magnetic 
stratigraphy of Lomonosov Ridge and 
Alpha Cordillera cores (3, 4) indicate 
that the sedimentation rates are only 1 to 
3 mm per 103 years. Herman (5, 6) has 
argued that the "foram-poor" layers 
deposited intermittently during the 
Brunhes magnetic epoch and throughout 
most of the Matuyama epoch represent 
milder periods than those of today, pos- 
sibly seasonally ice-free intervals. Clark 
(7), on the other hand, has held that the 
Arctic has been covered continuously 
with perennial sea ice from middle Ceno- 
zoic time to the present, and that the fo- 
ram-poor layers were not typical of inter- 
vals milder than the present but actually 
were laid down during times when the 
ice cover was thicker than today's, 
which ranges from 3 to 4 m at winter's 
end to 2 to 3 m at summer's end (8). 

Field observations and theoretical cal- 
culations indicate that sea ice reaches an 
equilibrium thickness at about 4 m (9). 
Furthermore, evidence exists for much 
drier climates during the peaks of glacial 
periods, probably due to a sharp drop in 
evaporation, reduced snowfall, and re- 
duced moisture when ice covered exten- 
sive land and ocean (10), precluding the 
existence of a thicker ice cover than 
today's. 
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We report here on the discovery of 
calcareous nannofossils (skeletal re- 
mains of planktonic unicellular photo- 
synthetic golden brown algae) in sedi- 
mentary cores from the crest and flank 
provinces of the Alpha Cordillera raised 
by Lamont-Doherty Geophysical Obser- 
vatory (LDGO) scientists, on drifting ice 
platforms (Table I and Fig. 1). This dis- 
covery supports the hypothesis of an epi- 
sodic warmer, possibly ice-free Arctic 
Ocean. Foraminiferal data and magnetic 
stratigraphy have been published (5, 6, 
11) for most cores. Within the time inter- 
val of - 4.5 x 106 years, recorded in the 
longest core, three major climatic re- 
gimes are recognized, represented here 
by climatic units I, II, and III (Fig. 1). 
Thirty-one samples taken from eight 
cores were examined, six of which con- 
tained nannofossils (Fig. 1); these sam- 
ples were selected from core tops and 
from downcore levels representative of 
the three climatic regimes. The earliest 
unit (III) consists of fairly well sorted 
manganese micronodule-bearing red 
clays with small but significant amounts 
of ice-rafted minerals (12). The plankton- 
ic foraminifera are dominated by polar, 
left-coiling Globigerina pachyderma 
complex, some of which are corroded. 
Benthonic foraminifera are represented 
by deep-water elements (5, 6). Neither 
coccoliths nor discoasters were found in 
these red clays. The boundary between 
units II and III coincides with the Gauss- 
Matuyama boundary (6, 11) (Fig. 1) and 
is defined by lithological and faunal 
changes. The change from "red clays" 
to tan silts with abundant coarse, ice- 
rafted debris is accompanied by faunal 
change. The planktonic foraminiferal 
fauna is dominated by the extant, solu- 
tion-susceptible Globigerina egelida and 
G. quinqueloba, which constitute up to 
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99 percent of the fauna of the shallower 
cores (< 2400 m). Today, G. egelida in- 
habits the Labrador Sea during summer 
and the North Atlantic slope water in 
winter (13). Elphidium, endemic to conti- 
nental shelves, constitutes up to 50 per- 
cent of the benthonic foraminiferal 
fauna, further evidence of the large-scale 
ice-rafting during the Matuyama. We be- 
lieve that these changes - 2.4 x 106 
years ago record a drastic alteration in 
the oceanographic regime, namely, the 
initiation of density stratification, a pre- 
condition for the formation of sea ice. 

One specimen each of Dictyococcites 
minutus, a small cosmopolitan species 
ranging from Eocene to Pleistocene, and 
Discoaster woodringi, a generalized Eo- 
cene to Pliocene representative of the 
thermophilic discoasters, were found in 
core T3-67-9 at 238 to 239 cm. They 
come from the same level in which 
warm-water planktonic foraminifera 
were found (5, 6, 11) and probably repre- 
sent Tertiary forms ice-rafted along with 
Elphidium spp. from shallow-water out- 
crops by drifting ice. The sediments of 
unit II were deposited during the Ma- 
tuyama epoch, a time of low global tem- 
peratures, milder than those of the fol- 
lowing Brunhes epoch (5, 6, 11, 14). The 
boundary between units I and II, defined 
by both faunal and lithological changes, 
occurs near the Brunhes-Matuyama 
boundary (Fig. 1). Five of the six nanno- 
fossiliferous samples are within unit I. 
Another climatic threshold was crossed 
about 0.9 x 106 years ago when peren- 
nial sea-ice cover developed over the 
Arctic Ocean, as indicated by the first 
occurrence of a "G. pachyderma-rich" 
layer similar to that being deposited 
today on the floor of the Arctic basin. 
Brunhes sediments are composed of al- 
ternating foram-rich and foram-poor lay- 
ers. We interpret the foram-rich layers as 
representing conditions similar to those 
prevailing today (perennial sea-ice cov- 
er) and the foram-poor layers as in- 
dicative of short, mild, possibly season- 
ally ice-free, lower salinity intervals, 
comparable to those of the Matuyama 
epoch. The planktonic fauna of unit I is 
dominated by the polar left-coiling G. 
pachyderma complex. However, G. 
quinqueloba, which is capable of with- 
standing low salinities, attains high fre- 
quencies near several of the boundaries 
between foram-rich and foram-poor lay- 
ers. Benthonic foraminifers are varied, 
and ice-rafted debris is scattered through- 
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Coccoliths occur very sparsely (-1 
per 104 silt-size grains) in five foram-poor 
layers and in one foram-rich sample tran- 
sitionally above a foram-poor bed (Fig. 
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