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formance by amnesic patients could occur be- 
cause some methods of testing yield good per- 
formance in all subjects [L. R. Squire, Neuro- 
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Diurnal variations in pain sensitivity 
have been demonstrated repeatedly in 
rats (1, 2). These variations are attenu- 
ated or abolished by the opiate antago- 
nist naloxone, suggesting that the phe- 
nomenon is mediated by an endogenous 
opioid system (3, 4). Strong support for 
this suggestion is provided by the finding 
that fluctuations in pain sensitivity are 
closely paralleled by alterations in levels 
of endogenous opioids in the rat brain 
(5). It has been assumed that this diurnal 
cyclicity in pain sensitivity reflects the 
circadian rhythm common to other pitui- 
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tary hormone concentrations (1). We 
now present evidence suggesting that 
diurnal fluctuations in pain sensitivity re- 
flect patterns of food intake rather than a 
circadian rhythm. 

Researchers reporting diurnal rhythms 
in pain sensitivity and endogenous 
opioid concentrations used standard 
light-dark cycles in conjunction with un- 
restricted feeding (1, 2). However, since 
rats given this liberty feed predominately 
at night (6), the possibility exists that 
pain sensitivity cycles are entrained by 
food intake patterns rather than light- 
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dark cycles. This suggestion is supported 
by the finding that food deprivation can 
induce analgesia, which is markedly at- 
tenuated by naloxone (4). Related to this 
point are several studies implicating en- 
dogenous opioid systems in the modula- 
tion of food intake. Central injections of 
opioid peptides increase food intake in 
the rat (7), while opiate antagonists de- 
crease food intake (8). Also, the cyclicity 
in adrenal responsiveness to adreno- 
corticotropic hormone (ACTH) is pri- 
marily a function of food intake patterns 
(9). In view of these findings, we ex- 
plored the hypothesis that diurnal fluctu- 
ations in pain sensitivity are entrained by 
circadian patterns of food intake. 

The subjects were 24 adult male hood- 
ed rats individually housed and main- 
tained on a 12-hour light-dark cycle. 
They were randomly assigned to one of 
two experimental groups. In the first 
group (group A), free access to food was 
given only during the light phase of the 
cycle; in the second group (group B), on- 
ly during the dark phase (10). Water was 
always freely available. 

After an 8-day period of adaptation to 
the restricted feeding schedule, the ani- 
mals were tested for pain sensitivity by 
the tail-flick method. The latency of tail 
flicking in response to a thermal stimulus 
of fixed intensity was determined for 
each rat during the first 2 to 4 hours of 
both the light and dark phases (11). The 
food availability schedules for the two 
groups were then reversed, and the ani- 
mals were tested again 8 days later. 

The results of this experiment clearly 
indicate that food availability can signifi- 
cantly alter pain sensitivity and that this 
effect is largely independent of the light- 
dark cycle. Pain thresholds were uni- 
formly elevated after food deprivation, 
regardless of the phase of the cycle (Fig. 
IA). A within-subjects, repeated-mea- 
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Abstract. Rats maintained on a 12-hour light-dark cycle were tested for pain sensi- 
tivity after being deprived of food during either the dark or the light phase of the 
cycle. Diurnal fluctuations in pain sensitivity were observed. The fluctuations fol- 
lowed food intake patterns rather than a natural circadian rhythm, with food depri- 
vation producing a decrease in pain sensitivity. The analgesic response produced by 
this mild food deprivation was strongly attenuated by naloxone or feeding, suggest- 
ing that endogenous opioid systems may be related to patterns of food intake. 
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sures analysis of variance revealed a sig- 
nificant main effect of food deprivation, 
F(1, 23) = 71.87, P < .01. Since rats 
feed predominantly in the dark when giv- 
en unrestricted access to food, the ani- 
mals in group B should have shown the 
normal cyclicity in pain sensitivity pre- 
viously reported (1, 2). This was in fact 
the case (Fig. IA). The lowest pain sensi- 
tivity in group B rats was seen when they 
were tested during the dark phase, 
t(10) = 5.87, P < .001, paralleling the 
reported diurnal elevation in opioid lev- 
els (5). However, the complete reversal 
of this pattern in the group A rats reveals 
the highly significant effect of food intake 
on this diurnal cyclicity (12). 

To further evaluate the contribution of 
hunger to the elevation in pain thresh- 
olds, we maintained the animals on the 
same food schedule for an additional 8 
days after completing the testing out- 
lined above. At this point, each group 
was tested during the 14th to 16th hours 
of its respective food deprivation period 
(N = 12 per group). The animals were 
then returned to their home cages, and 
half of each group (N = 6) was allowed 
access for 2 hours to laboratory chow 
and a palatable mixture of chocolate milk 
and mash. (The other half of each group 
remained deprived of food.) At the end 
of the 2 hours, all the animals were re- 
tested for pain sensitivity. Subsequently, 
each animal was given an injection of 
naloxone (4 mg/kg) and retested 15 min- 
utes later. This procedure provided an 
indication of whether any decrease in 
pain sensitivity was mediated by an en- 
dogenous opioid system. 

As shown in Fig. 1B, the rats that were 
given access to food for 2 hours exhib- 
ited a significant increase in pain sensi- 
tivity on retesting. Paired t-tests indicate 
that the decrease in tail-flick latencies af- 
ter eating was significant for group B, 
t(5) = 4.65, P < .01, and for group A, 
t(5) = 6.26, P < .01. In contrast, the an- 
imals that were not fed showed no signif- 
icant differences in latency over the 2- 
hour intertest interval. These findings in- 
dicate that food deprivation during either 
the light or the dark phase results in a 
decrease in pain sensitivity that can be 
reversed by food intake. 

In the food-deprived animal, nalox- 
one, like feeding, increased pain sensi- 
tivity, but it had no effect if pain sensitiv- 
ity had already been reduced by feeding 
(Fig. IB). Both groups that were de- 
prived of access to food during the inter- 
test interval exhibited significant reduc- 
tions in tail-flick latency after the injec- 
tion of naloxone (for group B, t(5) = 
3.16, P < .02; for group A, t(5) = 3.35, 
P < .02). Naloxone did not significantly 
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reduce latencies in satiated animals test- 
ed during either phase of the light cycle. 

Our results suggest that daily fluctua- 
tions in pain sensitivity to thermal stimu- 
li are strongly mediated by food intake 
patterns rather than by an independent 
circadian rhythm. Previous investiga- 
tions of fluctuations in pain sensitivity or 
opioid levels in the rat employed similar 
light cycles in conjunction with unre- 
stricted food availability. Since rats are 
primarily nocturnal feeders under these 
conditions, the results from the previous 
investigations were obtained under con- 
ditions functionally paralleling those to 
which our group B rats were subjected. 
Thus sensitivity to heat was found to be 
high during the light phase and low dur- 
ing the dark phase. By restricting the 
availability of food to the light phase, we 
were able to reverse the diurnal pattern 
of pain sensitivity without altering the 
light-dark cycle. 

The increase in pain sensitivity pro- 
duced by naloxone in food-deprived ani- 
mals replicates our earlier finding that 
deprivation-induced analgesia is mediat- 
ed by an endogenous opioid system (4). 
The fact that feeding also increases pain 
sensitivity in the deprived animal sug- 
gests that the effect of food deprivation 
on pain sensitivity is related to a hunger 
state rather than to associated phenome- 
na, such as altered activity cycles. It is 
not clear whether analgesia induced by 
food deprivation reflects a generalized 
stress reaction or is related to a function- 
ally specific role of endogenous opioid 
systems in food intake. However, /3- 
endorphin and a Met-enkephalin analog 
produce an increase in food intake after 
central administration in the rat (7). Con- 
versely, naloxone decreases food and 
water intake in this species (8). Recently, 
Rossier et al. (13) reported that the con- 
centration of Leu-enkephalin in the pars 
nervosa of obese adult mice was 200 per- 
cent higher than that in littermate con- 
trols. Moreover, this increase exhibited 
a linear trend, with the greatest weight 
gain occurring in the obese animals. In 
view of these considerations, it seems 
likely that the endogenous opioids play a 
relatively specific stimulatory role in 
feeding. 

Corticosterone levels and cycles of ad- 
renal responsiveness to ACTH are also 
reported to reflect food intake patterns 
(9). Since ACTH and 3-endorphin have 
the same precursor molecule, reside in 
the same cells and granules of the pi- 
tuitary, and are released in equimolar 
amounts after stress (14), it is feasible 
that this common family of peptides may 
participate in a complex neurohumoral 
system that influences food intake and 

metabolic homeostasis. In this context, 
it is noteworthy that /-endorphin pos- 
sesses lipolytic properties (15) and has 
direct stimulatory properties on the pan- 
creas and kidneys (16). 

ROBERT F. MCGIVERN 
GARY G. BERNTSON 

Laboratory of Comparative and 
Physiological Psychology, Ohio State 
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