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Photochemical Production of Formaldehyde in 

Earth's Primitive Atmosphere 

Abstract. Formaldehyde could have been produced by photochemical reactions in 
Earth's primitive atmosphere, at a time when it consisted mainly of molecular nitro- 
gen, water vapor, carbon dioxide, and trace amounts of molecular hydrogen and 
carbon monoxide. Removal of formaldehyde from the atmosphere by precipitation 
can provide a source of organic carbon to the oceans at the rate of 101 moles per 
year. Subsequent reactions offormaldehyde in primeval aquatic environments would 
have implications for the abiotic synthesis of complex organic molecules and the 
origin of life. 

The photochemical oxidation of meth- 
ane (CH4) is known to be a major source 
of formaldehyde (H2CO) in Earth's at- 
mosphere (1). The presence of CH4 and 
other reduced gases, in abundances 
greatly exceeding those expected in 
thermochemical equilibrium, arises from 
biological activity (2). This report is con- 
cerned with the production of H2CO, by 
photochemical reactions in the atmo- 
sphere, at an early stage in Earth's his- 
tory before life has originated; H2CO is 
one of the simple molecules that might 
have played a key role in the abiotic syn- 
thesis of complex organic molecules on 
the primitive Earth. 

The laboratory synthesis of H2CO and 
other important organic molecules has 
been carried out by a number of work- 
ers. The initial mixtures used to simulate 
the composition of the primitive atmo- 
sphere have ranged from highly reducing 
(3) to slightly oxidizing (4) materials. Al- 
though the oxidation state of Earth's at- 
mosphere before life had originated is 
still highly uncertain, it is generally 
agreed that it would have been deter- 
mined by the outgassing history and the 
composition of volcanic gases. There is 
strong indirect evidence for a geological- 
ly rapid initial degassing of volatiles, 
rather than a continuous release over the 
history of the terrestrial planets. Sup- 
porting arguments for this view have 
been presented by Fanale (5) for Earth, 
by Walker (6) for Earth and Venus, and 
by McElroy et al. (7) for Mars. It is also 
unlikely that free iron would have been 
present in the upper mantle for more 
than 5 x 108 years after Earth had 
formed (8). Once native iron had been re- 
moved from the upper mantle by dif- 
ferentiation of the core and mantle, vol- 
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canic emissions of CH4 would have been 
negligible and the composition of volcan- 
ic gases would not differ significantly 
from that of the present (8). However, 
the outgassed volatiles may have con- 
tained a small fraction (a few percent) of 
reduced compounds such as H2 and CO, 
in amounts slightly greater than those 
observed today (6). It has been implicitly 
assumed by earlier workers that the re- 
duced materials was lost solely through 
the escape of H2 from the exosphere. 
Our study raises the possibility of the 
production of reduced organic carbon 
from this material. 

The major atmospheric constituents 
after Earth had differentiated should be 
CO2, N2, and H20 (8), with smaller 
amounts of reduced gases such as H2 and 
CO. For the purposes of this investiga- 
tion, we have assumed that the abun- 
dances of CO2, N2, and H20 are the same 
as today's and that the abundance of H2 
was governed by the balance between 
volcanic release, the escape of hydrogen 
atoms, and photochemical reactions. 
The mixing ratio of H2 in the atmosphere 
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Fig. 1. Concentrations of im- 
portant minor species in the 
standard model. The surface 
mixing ratios of N2, H20, C02, 
CO, and H2 are 1, 1.5 x 10-2, 
3 x 10-4, 3 x 10-7, and 1 x 
10-3, respectively. Except for 
H20, these gases are well 
mixed throughout the tropo- 
sphere. The height-indepen- 
dent eddy diffusion coefficient 
is 106 cm2 sec-1. 

.0 
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was calculated to be of the order of 10-3 
(9). Except for the absence of a strato- 
spheric thermal inversion, the thermal 
structure was also taken to be the same 
as the present. The reactions and rate 
coefficients used in the photochemical 
model are presented in Table 1 (10). 

In the absence of shielding by 02, CO2 
and H20 are photolyzed in the tropo- 
sphere according to the reactions 

CO2 + hv -* CO + O 

H20 + hv -- H + OH 

(J1) 

(J2) 

Hydrogen atoms, formed in reaction J2 
react with CO to yield formyl radicals 
(HCO) by 

H + CO +M-- HCO + M (R7) 

The HCO radicals are removed by the 
following paths (11) 

HCO + H -- H2 + CO 

HCO + hv -- H + CO 

(R8) 

(J3) 
HCO + HCO -> H2CO +CO (R9) 

The production of H2CO from CO2 is de- 
scribed by the following reaction se- 
quence 

2(CO2 + hv- CO + ) (J1) 

2(H20 + hv - H + OH) (J2) 
2(H + CO + M ->HCO + M) (R7) 
HCO + HCO ->H2CO + CO (R9) 

CO + OH -CO2 + H (R5) 

2(0 + H2 -> OH + H) (R2) 
3(OH + H2 -> H20 + H) (R1) 

3(H + H + M -> H2 + M) (R6) 

which may be summarized as 

CO2 + 2H2- H2CO + H20 

In our standard photochemical model, 
the abundances of the major atmospheric 
gases are as follows: N2, 0.8 bar; H20, 
0.012 bar; CO2, 2.4 x 10-4 bar; CO, 
2.4 x 10-7 bar; and H2, 8.0 x 10-4 bar 
(12). Vertical profiles of important minor 

2 OH 0 HCO H0 0/H 

105 106 107 108 109 101o 

0036-8075/80/1010-0183$00.50/0 Copyright ? 1980 AAAS 183 



constituents are shown in Fig. 1. Produc- 
tion and loss rates of HCO radicals and 
H2CO are given in Fig. 2. Most of the 
H2CO (- 99 percent) is destroyed by 
photolysis (reactions J4 and J5). How- 
ever, a small fraction is incorporated into 
rain droplets and delivered to the 
oceans. We calculated the rate of remov- 
al of H2CO from the atmosphere by pre- 
cipitation, using the scavenging coeffi- 
cients of Wofsy (13) for H2CO in the 
present atmosphere. For the standard 
model the rainout rate of H2CO was 
2.8 x 108 molecule cm-2 sec-'. A variety 
of models were also constructed to study 
the sensitivity of our results to the choice 
of the essential input parameters (14). 

The atmospheric abundance of CO2 
was controlled by a number of process- 
es, including volcanic release, the weath- 
ering of surface rocks, and dissolution in 
the oceans. It is most likely (15) that the 
partial pressure of CO2 in the primitive 

8.0 P(H2CO) L(H2CO) 

4.0 - 

L(HCO) P(HCO) 

t10 102 103 104 105 106 

Production and loss rates (cm~3 sec-l) 

Fig. 2. Production (P) and loss (L) rates 
HCO and H2CO in the standard model. 

atmosphere was buffered at about 2 
10-4 bar by the latter two processe 
However, recent work (16) suggests 
possibly higher concentration of CO2 
the primitive atmosphere. In this cas 
the production and subsequent raino 
rate of H2CO could greatly exceed th 

calculated in our standard model (14). 
Our results are also somewhat sensitive 
to the thermal structure. Knauth and Ep- 
stein (17) have suggested that surface 
temperatures could have reached 340 K 
during the early Archean (3.7 x 109 
years ago). In this calculation, the distri- 
bution of relative humidity was held 
fixed at 50 percent (14). 

For the case of an H2 mixing ratio of 
107 10-3, the concentration of 02 is ex- 

ceedingly small. The tropospheric profile 
of of 02 is governed, in this case, by pho- 

tochemical equilibrium. Later evolution- 
ary stages may be represented by the 
models, in which the H2 abundance has 

x decreased. In addition, the emergence of 
s. 02, perhaps because of photosynthesis 
a (18), would have curtailed the produc- 

in tion of H2CO. This would have occurred 
e, through reactions such as 
Lut 
at 0 + HCO -OH + CO (R12) 

02 + HCO- HO2 + CO (R13) 

Table 1. Reactions and rate coefficients used in the photochemical model. Units for two- and 
three-body rate constants are cubic centimeters per second and centimeters raised to the sixth 
power per second, respectively. Globally averaged photodissociation rate constants (per sec- 
ond) are given for 0 and 12 km, respectively. Numbers are values used in the standard model; T, 
absolute temperature; Patm, atmospheric pressure. 

Rate constant Source 
Reaction 

0km 12km (10) 

Jl CO2 + hv -CO + 0 2.3 x 10-12 3.5 x 10-1 a 
J2 H2O + hv- H + OH 9.3 x 10-5 1.4 x 10-9 a 
J3 HCO + hv-> H + CO 1.0 x 10-2 1.0 x 10-2 b 
J4 H2CO + hv- H + HCO 1.8 x 10-5 1.8 x 10-5 c 
J5 H2CO + hv H2 + CO 2.5 x 10-5 2.5 x 10-5 c 
J6 H202 + hv-- OH + OH 5.5 x 10-5 5.7 x 10- a 
J7 02 +hv- 0+ 0 4.1 x 10-1? 4.7 x 10-1 a 
J8 03 + hv 02+ O 2.3 x 10-4 2.3 x 10-4 a 
R1 H2 + OH -> H20 + H 1.2 x 10-1 exp(-2200/T) d 
R2 H2 + O -- H + OH 7.0 x 10-1 exp(-5000/T) e 
R3 0 + OH -- 02 + H 1.7 x 10-11 f 
R4 OH + OH--> H20 + O 1.0 x 10-1 exp(-500/T) d 
R5 CO + OH -- CO2 + H 1.3 x 10-13(1 + Patm) d 
R6 H + H + M- H2 + M 2.6 x 10-33 exp (375/T) g 
R7 H + CO + M-> HCO + M 2.0 x 10-33exp(-850/T) h 
R8 H + HCO -> H2 + CO 3.0 x 10-10 i 
R9 HCO + HCO -- H2CO + CO 6.3 x 10-11 i 
R10 OH + HCO - H20 + CO 5.0 x 10-1 h 
Rll O + HCO -> H + CO2 1.0 x 10-? j 
R12 O + HCO-> OH + CO 1.0 x 10-10 j 
R13 02 + HCO- H02 + CO 5.0 x 10-12 d 
R14 HO2 + HCO -- H202 + CO 1.0 x 10-1 k 
R15 H + H2CO -- H2 + HCO 2.8 x 10-1 exp(-1540/T) d 
R16 OH + H2CO -- H20 + HCO 1.7 x 10-1 exp(-100/T) d 
R17 0 + O + M -- 02 + M 9.6 x 10-34exp(480/T) e 
R18 0 + 02 + M -> O3 + M 9.9 x 10-29T-2.- d 
R19 0 + 03- 02 + 02 1.5 x 10-" exp(-2218/T) d 
R20 H + 02 + M - HO2 + M 1.6 x 10-28T-.4 d 
R21 0 + H02 -- OH+ 02 3.5 x 10-1 d 
R22 H + H2 --> H2 + 02 1.4 x 10-1" 
R23 H + HO2 -- OH + OH 3.2 x 10-11 
R24 H + H02 - H20 + O 9.4 x 10-13 
R25 OH + H02 - H20 + 02 4.0 x 10-1 d 
R26 HO2 + HO2 -- H202 + 02 2.5 x 10-12 d 
R27 H202 + O -> OH + HO2 2.8 x 10-2 exp(-2125/T) d 
R28 H202 + OH -> H20 + HO2 1.0 x 10-11 exp(-750/T) d 
R29 H + 03 -> OH + 02 1.4 x 10-10exp(-470/T) d 
R30 OH+ 03-- HO2 + 02 1.6 x 10-12 exp(-940/T) d 
R31 HO2 + 03- OH + 202 1.1 x 10-14exp(-580/T) d 

184 

The value given for the wet removal of 
H2CO, in the standard model, is suf- 
ficient to fill the oceans, at their present 
volume, to a 10-3M solution in 10 x 106 
years. At this concentration, H2CO in 
solution may polymerize (19). The re- 
sults of Ponnamperuma (20) indicate 
that, in the presence of ultraviolet radia- 
tion of wavelengths near 2800 A, polym- 
erization may take place in a 3 x 10-4M 
solution of H2CO. Other processes may 
also have occurred (4). However, this 
does not alter the conclusion that simple 
organic molecules could have been deliv- 
ered to the oceans from photochemical 
reactions in the atmosphere under weak- 
ly reducing conditions. Further laborato- 
ry studies should be performed to assess 
the factors governing the production and 
stability of H2CO in conditions appropri- 
ate to the primitive Earth. 
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Geomorphic evolution of impact cra- 
ters on planetary surfaces, created over 
a wide range of geologic time and a wide 
spectrum of sizes, provides insight into 
the temporal behavior of endogenic mod- 
ification processes. This report presents 
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and is the number of craters of size > D 
that exist on a surface formed at time t; 
the variable t* is max[t,To(D)]. The inter- 
pretation of t* in N(D,t*) is clear if we 
envision a surface, formed at time t, that 
collects craters to the present. We count 
those craters in the present epoch, but it 
is clear that by definition if t < To(D), 
craters of size D on the surface formed at 
t will not last to the present and be 
counted today. Conversely, if t > To(D), 
craters of size D will persist and be 
counted. 

For a thermal history we assume a sce- 
nario starting 4.6 x 109 years ago with a 
silicate core containing a chronditic com- 
plement of radiogenic heat sources, a liq- 
uid water mantle, and a surface temper- 
ature, To, of 100 K. At all times in the 
history of Ganymede, the Rayleigh num- 
ber for the mantle is supercritical and 
convection is the dominant mode of heat 
transport. The freezing time of the liquid 
water mantle has been described (3). Us- 
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Ganymede: A Relationship Between Thermal 

History and Crater Statistics 

Abstract. An approach for factoring the effects of a planetary thermal history into 
a predicted set of crater statistics for an icy satellite is developed andforms the basis 
for subsequent data inversion studies. The key parameter is a thermal evolution- 
dependent critical time for which craters of a particular size forming earlier do not 
contribute to present-day statistics. An example is given for the satellite Ganymede 
and the effect of the thermal history is easily seen in the resulting predicted crater 
statistics. A preliminary comparison with the data, subject to the uncertainties in ice 
rheology and impact flux history, suggests a surface age of 3.8 x 109 years and a 
radionuclide abundance of 0.3 times the chondritic value. 
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