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It is well known that animals can learn 
to suppress the intake of flavored solu- 
tions associated with x-irradiation (1) 
and poisons (2). It has not been demon- 
strated that animals can avoid a flavor on 
the basis of the anticipation of its condi- 
tioned aversive taste. With few excep- 
tions (3), the measurement of a taste 
aversion has been in terms of the sup- 
pression of fluid intake. The animals 
have first to make a direct contact with 
or "recognize" the taste or odor of the 
fluid; then they show suppression. We 
have found that rats could anticipate the 
upcoming aversive taste, or, in more 
cognitive terms, that rats could use alley 
cues to recall the memory of a taste. In a 
second experiment, we found that the 
learning or expression (or both) of a taste 
aversion could be attenuated by prior be- 
havioral procedures. [Radiation-induced 
(4) and poison-induced (5) aversions can 
be blocked or attenuated by chemical 
agents.] The prior behavioral treatment 
in experiment 2 was partial reinforce- 
ment (PRF) training using as reward the 
particular flavored solution to which the 
aversion is conditioned. 
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fish, excluding the apteronotids, are modified 
muscles, the normal discharge can be eliminated 
with curarelike drugs such as Flaxedil or Allofe- 
rin. 

9. An S2/SI ratio of 0.5 was chosen for this figure; 
with this large S2 intensity, the steepness of the 
slopes of the phase function is significantly dif- 
ferent in the regions of 0 and 7r. Since the direc- 
tion of the phase shift in the regions of 0 and rr is 
also opposite for opposite signs of AF, the fish 
could theoretically decode the sign of the AF 
from the phase function alone. Behavioral ex- 
periments (7) show that the phase information 
alone is insufficient for evoking the JAR. 
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The general experimental sequence of 
both experiments had three phases: (i) 
thirsty rats were trained to run in an alley 
for a flavored solution as reward; (ii) that 
taste was then made aversive through a 
conditioning procedure in the home 
cages; and (iii) the approach response to 
the flavored solution, learned in phase 1, 
was extinguished. The experiment was 
conducted during the light phase (0800 to 
2200 hours) of a light-dark cycle. The 
training apparatus was a straight alley 
runway with a clear Plexiglas top and a 
black interior. It was 194 cm long, 7 cm 
wide, and 7.3 cm high. The first 35 cm 
comprised the start box and the last 35 cm 
comprised the goal box. Both compart- 
ments were separated from the run seg- 
ment (alley) by guillotine doors. A round 
metal cup, 2.7 cm in diameter, 1 cm deep, 
and 1.5 cm above the floor, was attached 
to the end wall of the goal box. The time- 
scoring system began when the start 
door was mechanically lowered by 
pressing a button. Three light beams, po- 
sitioned at 30 cm, 122 cm, and 152 cm 
from the start door, controlled three 
electric clocks that recorded start, 
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run, and goal times to 0.01 second. 
In experiment 1, 48 60- to 70-day-old 

female Sprague-Dawley rats bred in our 
laboratory were run in three squads of 
16. Deprived of water for 24 hours, the 
rats were placed four times in the goal 
box with 1 ml of a 1.5 percent solution of 
vinegar (by volume in tap water) as a re- 
ward. (i) Phase 1 runway acquisition 
training, initiated 24 hours after goal box 
training, consisted of 30 continuous rein- 
forcement (CRF) trials over 3 days, with 
6, 12, and 12 trials per day. Reward was 
1 ml of the vinegar solution placed in the 
goal box cup. The intertrial interval was 
20 minutes. (ii) Phase 2, conducted 24 
hours after the runway acquisition phase 
of training, was taste-aversion condi- 
tioning in the home cage. At this point, 
three of the four groups of rats were al- 
lowed to drink vinegar, a 0.2 percent sac- 
charin solution (weight to volume in tap 
water), or water for 30 minutes in their 
home cages. The drinking was followed 
immediately by an intraperitoneal injec- 
tion of 0.3M lithium chloride (LiCI) (3 
percent of body weight). The fourth 
group was a control that drank vinegar 
solution but was injected with an equiva- 
lent amount of physiological saline. (iii) 
Phase 3 runway extinction (five trials) 
was conducted 24 hours after home-cage 
taste-aversion conditioning. On extinc- 
tion trials the goal box cup was clean and 
empty. Thirty minutes after the runway 
extinction phase, all four groups of rats 
were allowed to drink vinegar solution in 
the home cage for 30 minutes as a test of 
the taste aversion conditioned in phase 
2. 

Figure 1A summarizes the runway ac- 
quisition and extinction data (6). All four 
groups of rats reached asymptotic run- 
ning speeds within 30 trials. In ex- 
tinction, the vinegar-LiCl group sup- 
pressed running speed on the first ex- 
tinction trial after taste-aversion 
conditioning; and the response was ex- 
tinguished below the operant level 
across trials. The saline control group 
was the slowest to extinguish. The other 
two poisoned groups-saccharin-LiCl 
and water-LiCl-ran faster than the vin- 
egar-LiCl group, but, perhaps because 
they were still affected by the illness, 
these two poisoned groups were slower 
than the saline control group (7). These 
data (and particularly the first extinction 
point) are to our knowledge the first 
demonstration of the suppressive effects 
of the anticipation of an aversive taste. 
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They also demonstrate a specific rela- 
tionship between aversive taste con- 
ditioning (in the home cage) and the 
suppression of an instrumental response 
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Recall (Versus Recognition) of Taste and Immunization 

Against Aversive Taste Anticipations Based on Illness 

Abstract. Two experiments show that, after taste-aversion conditioning, rats can 
use external retrieval cues to recall or anticipate the aversive taste solution and 
avoid its location without making contact with the flavor. They also show that the 
rat's avoidance of a conditioned aversive taste and its consumption of the aversive 
flavored solution can be attenuated by giving it prior runway training in which taste 
reward is given inconsistently on a partial reinforcement schedule. 
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to that taste as reward in the goal box. 
During the taste-aversion conditioning 

trial, before LiC1 injection, the two vine- 
gar groups drank about the same amount 
of vinegar solution, and their intake did 
not differ from that of the saccharin and 
water groups (Fig. IB). After the runway 
extinction phase all three LiCl groups 
suppressed drinking in comparison with 
the saline control group (8). This general- 
ization of suppression of drinking corre- 
sponds to the generalization of suppres- 
sion of the running response during ex- 
tinction. 

In experiment 2, we asked whether 
PRF training with a flavored solution in 
the goal box would "immunize" rats 
against the subsequent suppressive ef- 
fects of anticipating that taste after it had 
been paired with LiCl. Sixty-four male 
and female rats were run in four squads 
of 16 each. The apparatus and all other 
training procedures were as in experi- 

A Acquisition 

ment 1 except that the reward was a sac- 
charin solution. This was again a three- 
phase experiment, but it differed from 
the first in three ways. (i) Runway acqui- 
sition (30 trials) included two reinforce- 
ment conditions, CRF and 50 percent 
PRF. (ii) The reward was a 0.2 percent 
solution of saccharin rather than vinegar. 
(iii) To reduce the likelihood that our re- 
sults could depend on direct effects of 
the illness induced by LiCl, the runway 
extinction phase (ten trials) was initiated 
48 hours after taste-aversion condi- 
tioning rather than 24 hours afterward. 
Because exposure to a taste affects its 
ability to serve as a conditioned stimulus 
for taste-aversion conditioning (9), the 
PRF animals, after each training session, 
were given an additional amount of sac- 
charin solution equal to the difference 
between the total amount of their re- 
wards and the rewards of the CRF ani- 
mals (10). During the taste-aversion con- 
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Fig. 1. Experiment 1. (A) Acquisition and extinction speed curves. (B) Fluid intakes during 
conditioning and testing of taste aversions. Abbreviations: V, vinegar; S, saccharin; W, water. 
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ditioning trial, half of the CRF and PRF 
subjects were given a LiCI injection im- 
mediately after a 30-minute period of ac- 
cess to a saccharin solution in their home 
cages; the other half of the CRF and PRF 
animals were injected with saline. On the 
day between home-cage conditioning 
and runway testing, all animals were giv- 
en water for 30 minutes in their home 
cages. 

The CRF-LiCl group extinguished 
more rapidly than the CRF-NaCl group 
(Fig. 2A). Again, saccharin was avoided 
on the first extinction trial. The finding 
confirms the result of experiment 1 that 
rats can anticipate and avoid a taste 
without ever having contacted it after it 
has been made aversive by conditioning. 
The confirmation is generalized to a new 
flavor (saccharin) and a longer interval 
after the illness (48 hours). 

The new finding was that the PRF- 
LiCl group was as resistant to extinction 
as the PRF-NaCl group, both groups ex- 
tinguishing more slowly than the CRF 
groups (11). This indicates that the initial 
PRF training can successfully immunize 
against the subsequent suppressive ef- 
fect of the anticipation of an aversive 
taste. One explanation is that the rat 
learns, on a PRF schedule in phase 1, to 
persist in approaching a flavored solution 
in the face of frustration, and this per- 
sistence transfers in phase 3 to approach- 
ing and drinking the solution in the face 
of the aversiveness of the taste. We can- 
not, however, rule out the possibility 
that the PRF training blocks the condi- 
tioning of the aversiveness in phase 2, 
and that the attenuation of avoidance in 
phase 3 is a secondary effect. [The stud- 
ies of attenuation of aversions by chem- 
ical treatment (4, 5) are also subject to 
alternative interpretations in terms of 
original learning as opposed to ex- 
pression of the flavor aversion.] 

As expected, there were no differences 
in fluid intake among the four groups of 
rats during the taste-aversion condi- 
tioning (Fig. 2B). Compared with the two 
saline controls, however, the poisoned 
groups, both CRF and PRF, suppressed 
saccharin consumption after extinction. 
The PRF-LiCl group drank more saccha- 
rin solution than the CRF-LiCl group 
(12). This result indicates that learned 
persistence based on the PRF runway 
training may generalize to the consum- 
matory behavior of drinking an aversive 
taste solution, reducing the disruptive- 
suppressive effect on intake of the aver- 
sive taste. However, our earlier caveat 
that preliminary PRF training may have 
a direct effect on the taste-aversion con- 
ditioning applies here as well. 

Both experiments demonstrate that a 
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taste paired with LiCl can be anticipated 
and avoided-that the anticipation of a 
taste, rather than the taste itself, can be 
aversive. The usual taste-aversion ex- 
periment demonstrates only escape from 
an aversive taste. As a historical side- 
light, this is a particularly clear demon- 
stration in the rat of what Tolman called 
an "insight" or "foresight" mechanism 
(a sign-gestalt-expectation). More than 
40 years ago, Miller showed that such a 
mechanism could be deduced from Pav- 
lovian conditioning principles in the form 
of Hull's fractional anticipatory goal re- 
sponse (13). 

Experiment 2 adds the finding that 
PRF training can reduce (immunize the 
rat against) the suppressive effects of the 
anticipation of the conditioned aversive 
taste and that such training attenuates 
the suppression of drinking of such a 
taste solution. If rats are reinforced in- 
termittently and inconsistently with a 
particular flavored solution, they will 
avoid that flavor less and drink more of it 
when it is subsequently paired with gas- 
trointestinal illness. Such a finding has 
potential practical as well as theoretical 
implications. One practical application 
might be to therapeutic situations in 
which taste aversions and anorexia fre- 
quently result from drug or radiation 
treatments or chemotherapy (14). The 
theoretical implications are for broad- 
ening the range of generalization and 
transfer of persistence in responding 
across motivational-reward systems 
(15). 
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ening the range of generalization and 
transfer of persistence in responding 
across motivational-reward systems 
(15). 
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Asymmetry in Facial Expression Asymmetry in Facial Expression 

The conclusion of Sackeim et al. (1) 
that there is "greater right-hemispheric 
involvement in the production of emo- 
tional expression" is unwarranted. They 
found that observers judge double-left 
composite faces as showing more intense 
emotion than double-right composite 
faces. However, they failed to consider 
the possibility that peripheral neural and 
anatomical differences rather than dif- 
ferences in the activity of the right and 
left cerebral hemispheres could explain 
such results. Facial surgeons note (2) 
that the two sides of the face differ in the 
size of the muscles, in fatty deposits (3), 
and in the neural supply from the facial 
nerve nucleus to the facial muscles. 
Without controls for such differences, 
the findings of Sackeim et al. cannot be 
interpreted as being due solely to dif- 
ferences in the impulses sent from the 
two cerebral hemispheres to the facial 
nuclei. 

There is also reason to question 
whether Sackeim et al. were justified in 
talking about lateralization in emotional 
expressions, since they studied a dif- 
ferent type of facial movement. Neurolo- 
gists distinguish between voluntary fa- 
cial movements (by which they usually 
mean the ability to perform requested ac- 
tions) and spontaneous emotional ex- 
pressions. The evidence is clear that 
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these two types of facial activity depend 
upon different neural pathways (4). The 
potential independence of these two 
types of facial actions is dramatically 
shown in clinical cases in which lesions 
in the pyramidal system (for example, 
the precentral gyrus) impair requested 
facial movements but leave emotional fa- 
cial movements intact, whereas lesions 
in nonpyramidal systems produce the re- 
verse pattern. This evidence emphasizes 
the need for caution in generalizing from 
studies of requested facial movements to 
emotional expression and vice versa. 
Thus, it is crucial to know whether the 
facial movements studied by Sackeim 
et al. were requested or more spontane- 
ous emotional expressions. 

Sackeim et al. did not accurately de- 
scribe the photographs they used, which 
W. V. Friesen and I supplied to them. 
They wrote that the pictures showed 
"posed" emotions, or "subjects deliber- 
ately attempting to convey particular 
emotions." Posing may involve either 
deliberate performance or some attempt 
to reexperience an emotion to produce 
the expression. If our photographs had 
been posed it would be unclear which 
kind of facial movements Sackeim et al. 
had studied. With few exceptions, how- 
ever, the photographs they used were 
not even poses, but the most deliberate 
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