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Life expectancies of scleractinian cor- 
als and other colonial animals are poorly 
known, largely because their modular 
mode of growth presents difficulties not 
evident in the demography of more con- 
ventional, solitary organisms (1-5). The 
few longevity estimates available for cor- 
als are primarily based on extrapolation 
from data on short-term growth and the 
untested assumption that colony size is 
proportional to colony age (5, 6). In this 
report, we show how relationships of 
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coral size to age can be severely dis- 
torted by three modular processes (par- 
tial colony mortality, colony fission, and 
colony fusion) and point out some of the 
more important consequences of these 
phenomena to population studies of reef 
corals. 

The numbers and sizes of five species 
of foliaceous scleractinian corals were 
recorded for 1 year at Rio Bueno, Jamai- 
ca. More than half of the 662 colonies 
censused were Agaricia agaricites. The 
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Fig. 1. (A) Size-frequency distributions of colonies of Agaricia agaricites on a vertical reef face 
just west of Rio Bueno Harbour, Jamaica, West Indies. Six quadrats (1 m2) were tied to the reef 
at - 10 m, -15 m, and -20 m. Nails were fixed adjacent to corals for spatial reference. All 
corals larger than I cm in diameter were photographed and measured in situ in July 1977 and 
again in July 1978. Changes in living coral dimensions over the year were determined to an 
accuracy of about I cm. Error bars indicate 1 standard deviation from the mean frequency for 
corals from the three depths combined. (B) Frequency distribution of the percentage of colony 
mortality over I year for three size classes of Agaricia agaricites. Coral sizes are maximum 
colony diameters. The sample size for corals < 10 cm is 216, for corals 10 to 20 cm it is 78, and 
for corals > 20 cm it is 47. 
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platelike growth form of this and other 
common species at Rio Bueno rendered 
them amenable to photographic analysis 
of processes affecting colony area and 
size. The pooled size-frequency distribu- 
tions for A. agaricites in 1977 and in 1978 
are shown in Fig. ! \. Although the 
smallest corals are numerically impor- 
tant, accounting for more than half the 
total colony count, they constitute less 
than 5 percent of the total area of living 
coral. If colony diameter and colony age 
were directly related, then Fig. IA would 
approximate a type 3 survivorship curve 
in which high juvenile mortality gives 
way to low mortality rates for older indi- 
viduals (1). Following known corals in 
photographs for successive years, how- 
ever, demonstrates that size and age are 
seldom directly related. This means that 
the stability apparent in Fig. IA does not 
result from a simple balance between 
births and deaths in the manner charac- 
teristic of solitary animals. 

Many of the colonies recorded in 1977 
were reduced in size during the year by 
various physical and biological process- 
es, especially sedimentation and ephem- 
eral overgrowth by algae. Such partial 
mortality is apparent in time series pho- 
tographs but difficult or impossible to de- 
tect in situ because coral skeleton bared 
by death of overlying tissue is readily 
overgrown by other sessile organisms or 
abraded by grazers. The frequencies of 
such injury for three size classes of A. 
agaricites are shown in Fig. IB. Colony 
mortality ranges from zero (escape from 
injury) to 100 percent (whole colony 
mortality). Nearly 60 percent (209 of 341) 
of all A. agaricites colonies suffered par- 
tial or complete mortality in 1 year. 
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Fig. 2. Surface and 
cross-sectional views of 

~, ~ three colonies of Mon- 
jury entirely, whetastrea annalaris show- 

Partial mortaling their origin from a 
mation of two single parent colony. 

The specimen length 
along the saw cut is 18 

Patterns of mortality are strikingly re- 
lated to colony size (Fig. B(7). Most small 

colonies died comple tely o r escaped in- 
jury entirely, whereas most large corals 
suffered partial mortality. 

Partial mortality can also result in for- 
mation of two or more similar colonies 
by fission of a previously existing large 
colony (7). Thirty-nine physically dis- 
tinct colonies of A. agaricites, Agaricia 
lamarcki, and Helioseris cucullata were 
formed from 18 parent colonies dur in g 
the year by such fission (2.2 colonies per 
square meter). Twenty-one of these new 
colonies were less than 5 cm in diameter. 
During the same year 62 newly settled 
coral colonies survived to 1 cm in diame- 
ter or larger (3.6 colonies per square me- 
ter). Thus fission produced small colo- 
nies at about one-third the rate of ob- 
served larval recruitment at this site. 

Fission forms adjacent colonies which 
presumably are of identical genotype. 
Subsequent lateral growth may reunite 
these colonies and eventually fusion may 
occur. Eleven cases of intraspecific colo- 
ny fusion involving 22 colonies of A. 
agaricites or H. cucullata were detected 
in the quadrats during the year. Thus, in 
a single year at Rio Bueno, 40 of 662 cor- 
als (6 percent) showed a dramatic change 
in size due to fission or fusion. Fusion 
was always perfect, involving both tissue 
and skeleton. Such fusion has been dem- 
onstrated experimentally only between 
coral fragments of the same original col- 
ony (8). 

Fission and fusion can be observed in 
sectioned colonies by tracing patterns of 
growth, orientation, and spacing of ca- 
lyces. The coral skeleton, then, may pro- 
vide an accurate account of colony on- 

togeny which often cannot otherwise be 
documented in a practical (human) time 
scale (6). For example, the three neigh- 
boring colonies of Montastrea annularis 
shown in Fig. 2 obviously had a common 
origin. Despite their different size they 
are of identical genetic age. From their 
rates of vertical and lateral growth we es- 
timate these colonies had been isolated 
for 3 to 5 years, and would not have 
grown together again for at least 10 
years. At some earlier time the original 
parent colony was larger than all three of 
the present colonies combined. 

Partial mortality, fission, and fusion 
occur in many organisms other than cor- 
als. Shrinkage or fission due to partial 
mortality also occurs in Porifera (9), Hy- 
drozoa (10), Gorgonacea (11), Ecto- 
procta (12), and a wide variety of terres- 
trial plants (2, 3). Similarly, fusion be- 
tween separated parts of the same 
colony has been observed in Porifera 
(13), Hydrozoa (14), other Anthozoa 
(15), Ectoprocta (16), Ascidiacea (17), 
and terrestrial plants (2, 3). Such modu- 
lar processes have an ancient pedigree. 
Growth patterns resulting from partial 
mortality, fission, and fusion are clearly 
evident in skeletal sections of Ordovi- 
cian and Silurian Ectoprocta (18), Stro- 
matoporoidea (19), and Tabulata (20). 

Our results show that partial mortali- 
ty, fission, and fusion occur often 
enough to profoundly distort any simple 
relationship between size and age among 
reef corals. The remarkable stability of 
the coral population during the year at 
Rio Bueno masks the dynamics of under- 
lying processes affecting colony growth 
and shrinkage. Similar size-frequency 
distributions of colonial animal popu- 
lations can be derived in many different 
ways. A colony of Agaricia agaricites 10 
cm in diameter which by chance had 
never suffered partial mortality might be 
only 5 years old. Alternatively, the same 
colony might be a remnant of a once 
much larger colony that settled hundreds 
of years before. Partial mortality and fis- 
sion which reduce colony size occur 
much more frequently than fusion which 
tends to offset colony shrinkage. We 
conclude that estimates of coral age 
based on colony size and growth data are 
probably far too low, especially for the 
largest corals. 
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(6-OHDA) to the neonatal rat pup results 
in hyperactive motor activity that abates 
with maturity and cognitive deficits that 
persist into adult life (4, 5). In recent 
studies we were able to attenuate such 
hyperactivity by placing the pups with 
their anesthetized mother (6). The sub- 
sequent reduction in activity was even 
more pronounced than that observed af- 
ter administration of amphetamine or 
methylphenidate. Furthermore, Randall 
and Campbell (7) noted that hyper- 
activity in the developing rat pup may 
be attenuated by the presence of an 
anesthetized lactating female, and Smith 
and Spear (8) showed that home environ- 
mental cues, such as litter shavings, are 
critical determinants of early learning 
and retention. These findings suggest a 
complex interaction between biological 
factors and environmental influences 
during early development. 

In the present experiment, we exam- 
ined the effects of varying the litter 
composition on activity and cognitive 
performance in normal and 6-OHDA- 
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treated rat pups. Sprague-Dawley rat 
pups (Charles River) were cross-fostered 
at 2 days of age and maintained with the 
same mother in litters of nine to ten ani- 
mals throughout the 33-day experiment. 
They were divided into four distinct 
groups: (i) vehicle homogeneous (V- 
Hom), pups administered saline and 
reared with similarly treated pups; (ii) 
treated homogeneous (T-Hom), pups 
treated with 6-OHDA at 5 days of age 
and reared with similarly treated pups; 
(iii) vehicle heterogeneous (V-Het), pups 
given vehicle and reared in litters in 
which 50 percent of the pups received 
vehicle and 50 percent 6-OHDA; and (iv) 
treated heterogeneous (T-Het), pups 
treated with 6-OHDA and reared in lit- 
ters in which, again, 50 percent of the 
pups received vehicle and 50 percent 6- 
OHDA. There were 12 litters in all (three 
litters for each of the four groups), with 
22 to 26 animals in each experimental 
group. Brain dopamine was selectively 
depleted at 5 days of age by adminis- 
tering desmethylimipramine (20 mg/kg, 
intraperitoneally) followed 1 hour later 
by intracisternal 6-OHDA (100 ,tg in 20 
,ul of saline, calculated as the free base; 
Regis Chemical). 

Activity was recorded in a soundproof 
room when the pups were 12, 15, 19, 23, 
27, and 30 days of age. Each pup was 
randomly assigned to one of ten plastic 
cages placed on the floor of the room, 
and recording was begun immediately 
with a television camera coupled to a 
time-lapse tape recorder. Activity was 
scored by playing the tape back at a 
speed equivalent to six times that of real 
time, and was determined for alternate 5- 
minute periods throughout a 60-minute 
observation period. Activity was defined 
as any detectable movement. Duration 
was determined by activating an electric 
timer at the onset of any movement and 
stopping it when the movement ceased. 
The cumulative duration of movements 
for each 5-minute interval was thus ob- 
tained, and the percentage of time in 
which the pup was active during each 60- 
minute observation period was then cal- 
culated and recorded. Avoidance per- 
formance was determined in a shuttle 
box at 27 days (9). All animals were 
killed at 33 days, and their brains were 
analyzed for dopamine and norepineph- 
rine by high-pressure liquid chromatog- 
raphy (10). Activity and avoidance learn- 
ing data were then subjected to analyses 
of variance, with age and trial blocks 
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Abstract. There is less hyperactive motor activity and better avoidance perform- 
ance in rat pups treated with 6-hydroxydopamine as neonates and reared with ve- 
hicle-treated littermates than in pups reared in litters composed solely of other 6- 
hydroxydopamine-treated animals. Thus, in this experimental model of hyper- 
activity, an environmental manipulation provides an alternative to pharmacologic 
agents in reducing activity and improving learning performance. 
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