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those seen in 1964 (9) and 1975 (10, 11). 
These year-to-year differences may be 
related to differences in the wind field, 
but at present the relation is not clear. 
During 1979, wedges of cold water were 
observed inshore of the separation zones 
at 4? and 10?N. Similar wedges at dif- 
ferent latitudes were seen in satellite im- 
ages in 1966 (12), 1969 (13), and 1976 
(13), but apparently not in 1977 and 1978 
(13). Further study of historical sea sur- 
face temperatures and a modest program 
of monitoring the current should clarify 
these year-to-year differences in the 
ocean's response to the monsoon. 
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plicated interleaving of high-salinity, 
low-oxygen water originating from the 
north with relatively fresh, high-oxygen 
water from the south (1). Few direct 
measurements have been made. A small 
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number of Swallow float and current me- 
ter observations taken by Swallow and 
Bruce (2) late in the southwest monsoon 
of 1964 indicated that there are energetic 
flows at depth. However, their directions 
were variable and no clear organized cir- 
culation pattern was discerned. In con- 
trast, recent observations of vertical pro- 
files of horizontal current along 53?E 
close to the equator revealed the pres- 
ence of persistent zonal flows that re- 
versed with depth (3): there was a pro- 
nounced westward jet at about 700 m. 
The role of these equatorial flows in the 
near-coastal circulation of the Somali 
Basin is unclear. 

During the spring and summer of 1979, 
an international oceanographic experi- 
ment called the Indian Ocean Experi- 
ment (INDEX) was conducted in the 
western Indian Ocean to study the re- 
sponse of the currents to the transition in 
the monsoonal winds. A special effort 
was made to observe the structure and 
evolution of the flow at intermediate 
depths. The techniques for doing this 
varied among ships. The Researcher 
measurements reported here were taken 
with an acoustically tracked dropsonde 
(4) from the surface to close to the bot- 
tom or to 2500 m. The University of Mi- 
ami investigators on the Columbus Iselin 
used a profiling current meter (PCM) (5). 
Profiles were restricted to the top 600 m 
of the water column, and the ship's drift 
over the bottom was determined by rang- 
ing on acoustic beacons deployed at the 
bottom. Subsurface velocity data from 
the Discovery were obtained by Swallow 
floats at 700 and 2000 m during May 
and June and by the PCM (0 to 700 m) 
during June only. Moored current meter 
data were also obtained during both 
months. 

Although some velocity data at inter- 
mediate depths were gathered from early 
March to late July, the most complete 
spatial coverage occurred in May, when 
all three ships were working simultane- 
ously. Figure 1 shows the velocities at 
around 700 m for 10 May to 4 June. The 
Columbus Iselin measurements extend- 
ed to only 600 m, but are included here 
because there was little shear between 
600 and 700 m. In any case, the bulk of 
the measurements, especially south of 
3?N, were made by the Researcher and 
the Discovery. The 700-m level was cho- 
sen for data analysis for two reasons. 
Close to this depth throughout the So- 
mali Basin is a salinity maximum from 
water overflowing from the southern end 
of the Red Sea (1). This permits tradi- 
tional tracing methods to be employed in 
inferring circulation. Second, the west- 
1 AUGUST 1980 

ward equatorial jet at this depth was 
found in May and June 1976 and was ex- 
pected to be present during INDEX. 

Calculations have been made of the 
transverse correlation length scale of the 
700-m velocity field (90 ? 20 km) and the 
root-mean-square magnitude (18 cm/sec) 
(6). These values are intermediate be- 
tween those for the 2000-m velocity field 
(50 ? 15 km and 10 cm/sec) and those 
for the surface field (160 + 40 km and 
85 cm/sec). Given the spacing of the ob- 
servations-varying between 20 and 200 
km-one can expect only the surface 
flow to be well mapped by the data. 

Figure 1 shows that at 700 m, the or- 
ganization of the flow field north of 3?N 
is indeed poorly revealed by the scale of 
the observation program. Between 7? 
and 9?N there may be an anticyclonic cir- 
culation such as that found by Bruce and 
Volkmann (7) in the same region, but 
measurements in June by the Discovery 
fail to confirm this conjecture. In con- 
trast, south of 3?N a coherent coastal 
current is evident flowing southwest- 
ward at least as far as 4?S. This flow is 
the most striking feature of the 700-m 
current measurements, but even within it 
strong time variability can be recognized. 

Superimposed on the velocity tiea- 
surements in Fig. 1 are the 750-m tem- 
peratures measured by expendable 
bathythermographs and conductivity- 
temperatute-depth probes along the 
ships' tracks. They mirror the structure 
of the velocity field. North of 3?N, the 
temperature shows no mappable feature, 
but south of this latitude the coastal cur- 
rent is revealed as a band of warm water 
with temperatures greater than 9?C. It 
terminates somewhere between 2? and 
4?S. The extent and strength of the cur- 
rent, 750 km and 25 cm/sec, which yield 
a transit time of 30 days, confirm the im- 
portance of time variability. 

Researcher measurements made from 
10 May to 4 June reveal a systematic 
weakening of the southwest flow. In- 
deed, north of the equator the flow re- 
verses. On the eastern side of the section 
at 2.5?N, the reversal to the northeast be- 
gins in early April; the northeastward 
flow gradually spreads westward until by 
the end of May the reversal is almost 
complete. This is shown by the dashed 
arrows in Fig. 1. South of the equator the 
southwestward flow weakens with time, 
but is still well defined at 2?S in mid- 
June. 

400 E 440 480 52? 560 

Fig. 1. Flow velocities at 700 m between 10 May and 4 June 1979. The solid arrows at 1.5?S and 
2.5?N indicate data taken between 16 and 22 May; the dashed arrows represent data taken 
between 26 and 31 May. The light line illustrates ship tracks along which temperature data were 
obtained. 
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Fig. 2. Alongshore velocity profile data taken at sites A and B (shown in Fig. 1). The zero for 
each consecutive profile has been shifted 60 cm/sec to the right of that for the previous profile. 
The dots in A indicate velocity estimates made with Swallow floats. The zero for these data is 
the same as that for the profile for 27 May. These velocity profiles were obtained by using the 
Pegasus. 

The vertical structure of the flow and 
its time evolution at sites A and B are 
shown in Fig. 2. North of the equator at 
site A in late April the surface flow was 
to the southwest, as might have been ex- 
pected from historical data (8). Hence 
the surface Somali Current had not yet 
reversed at this location. Beneath this 
shallow southwestward flow, from about 
150 to 450 m, was a pronounced north- 
eastward flow. The other stations in this 
section show it to be concentrated next 
to the coast. Similar vertical structures 
were observed by the Columbus Iselin in 
mid-March about 140 km to the north- 
east of this location, indicating that the 
structure was present at least during the 
latter part of the northeast monsoon. 
Stations farther north did not show this 
feature. Beneath the northeastward flow 
(Fig. 2A), the flow was to the southwest 
with a peak speed of about 40 cm/sec. 
The horizontal structure of this flow is 
shown in Fig. 1. As noted earlier, at this 
location southwestward flow is replaced 
by northeastward flow during mid-May. 
The northeastward flow becomes re- 
markably uniform with depth in the deep 
water, as seen from the 27 May profile. 
The points next to this profile indicate 
the velocities that were measured by the 
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Discovery with Swallow floats at 700 and 
2000 m about 65 km to the northeast of 
this location in late June. The amplitude 
of the flow has remained about constant, 
but the uniform section extends closer to 
the surface. 

South of the equator at site B, the sur- 
face flow was northeasterly at about 2 m/ 
sec in late April (Fig. 2B). It again came 
as a surprise to find beneath this a flow 
reversal with depth. Below about 250 m 
the flow was to the southwest. The re- 
markable feature of these profiles is that 
despite the strong surface flow, the in- 
tegrated transport is to the southwest. 

The profiles north and south of the 
equator are distinctly different. South of 
the equator, the pronounced subsurface 
northeastward jet from 150 to 470 m is 
absent. The northeastward surface flow 
extends to about 250 m, and the flow re- 
verses to the southwest below this. Also, 
this southwestward flow is more depth- 
limited in late April than it is north of the 
equator. During mid-May the deep 
northeastward flow that develops north 
of the equator is absent south of the 
equator. The northeastward flow devel- 
ops in late May and even then only at the 
outermost station. 

At 49?E on the equator, PCM mea- 

surements by the Discovery reveal the 
structure of the 700-m equatorial jet in 
June, and floats demonstrate its exis- 
tence in May (Fig. 1). At times this flow 
can penetrate to the coast, as evidenced 
by the strong westward flow measured 
by the Columbus Iselin at 0?, 43015'E. 
The water at this depth in the jet has tem- 
perature and salinity characteristics dur- 
ing the time that are found nowhere 
north of 3?N nor along the coast, so the 
jet must turn south of the equator or, if 
north, must recirculate south of 3?N. 
Since the temperature and salinity char- 
acteristics of the southwestward coastal 
current are the same as those of the wa- 
ter north of 3?N, the equatorial jet gener- 
ally cannot penetrate to the coast. Is the 
equatorial current steered by the orienta- 
tion of the coastline? How does the 
weakening of the coastal flow and its re- 
versal north of the equator fit into this 
description? And what determines the 
vertical structure of the coastal current? 
These and related questions will be ex- 
plored through the wealth of material 
gathered in this program, and will, we 
hope, stimulate theoretical investiga- 
tions of the response of the deeper 
ocean. 
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