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Quantum Nondemolit 
Measureme 

Vladimir B. Braginsky, Yuri I. Vorontsov, Kip S. TI 

Scientists have understood since the 
1920's that the physical laws which gov- 
ern atoms, molecules, and elementary 
particles are very different from the laws 
of everyday experience. The special 
laws of the atomic and molecular "mi- 
croworld" are called quantum mechan- 

As an example, if a 
the position of an eleci 
complete accuracy, his 
evitably will kick the e 
tally unpredictable fore 
surement of the electr 
mediately after the firsi 

Summary. Some future gravitational-wave antennas will be cylinc 
kilograms, whose end-to-end vibrations must be measured so acct 
timeter) that they behave quantum mechanically. Moreover, the v 
must be measured over and over again without perturbing it (quant 
measurement). This contrasts with quantum chemistry, quantum 
nuclear, and elementary particle physics, where one usually makl 
on an ensemble of identical objects and does not care whether ai 
perturbed or destroyed by the measurement. This article describes 
techniques required for quantum nondemolition measurements and 
lying them. Quantum nondemolition measurements may find applic 
science and technology. 

ics; those of everyday experience are 
classical mechanics. The laws of quan- 
tum mechanics were forced on physicists 
and chemists in the 1920's as the only 
possible way to understand the spectral 
properties of the light emitted by atoms 
and molecules. 

Quantum mechanics tells us that, 
whenever a person measures some prop- 
erty of an electron (or of any other object 
in the microworld), his measurement in- 
evitably will disturb the electron in a 
somewhat unpredictable way. The more 
accurate the measurement, the bigger 
and more unpredictable the disturbance. 
The disturbance is not due to the per- 
son's incompetence; rather, it is an in- 
trinsic and inevitable feature of the laws 
of quantum mechanics. 
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same position as the fi 
measurement of the e 
tum will give a comp 
result. 

If, nevertheless, tl 
measured very careful 
nite result is obtained 
measurement inevitabl 
electron's position by 
amount. If a second 
surement is made, the 
advance: it will be the 
tained. But if the next 
position, nobody can I 
advance. 

It matters not at al 
makes his measuremei 
technology of the 192( 
the 1980's, or the besl 
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tury: an accurate position measurement 
must completely disturb the momentum; 
an accurate momentum measurement 
must completely disturb the position. 

As bizarre as this situation may seem, 
it is even more bizarre when studied in 
greater depth-as was done theoretically 

lon by Niels Bohr, Werner Heisenberg, John 
von Neumann, Wolfgang Pauli, and oth- 

hnts ers in the 1920's and 1930's. [See the 
textbook of Bohm (1) for details; see (2) 
for a detailed illustrative example.] It 

home turns out that the unpredictable distur- 
bance is a direct result of the extraction 
of information about the particle's posi- 
tion or momentum. It matters not how 

person measures the information is extracted, nor where it 
tron in space with is stored-in a person's brain, on mag- 
s measurement in- netic tape, or in some minute change of 
electron with a to- the state of some other particle. So long 
:e. A second mea- as the information exists somewhere in 
on's position, im- the universe outside the original particle 
t one, will give the (more precisely, "outside the particle's 

wave function"), future measurements 
of the particle will reveal that the distur- 

lers of mass -100 bance has occurred. The only way to un- 
urately (10-19 cen- do the disturbance is to "run the measur- 
ibration amplitude ing apparatus perfectly backward" and 
rum nondemolition thereby reinsert all the information back 
optics, or atomic, into the particle. Only if no trace of the 
es measurements information remains anywhere, not even 
ny single object is in the experimenter's brain, can the par- 
the new electronic tide return to its original undisturbed 
I the theory under- state. 
ation elsewhere in The quantum theory of measurement 

(1), which tells us these things and more, 
is very widely but not universally accept- 
ed by physicists. Einstein never fully ac- 

irst one did; but a cepted it (3); Lamb, a Nobel Prize win- 
lectron's momen- ner for his experimental work in quan- 
letely unexpected tum physics, does not fully accept it (4). 

The authors of this article do accept it, 
ie momentum is and will presume it to be correct 
ly and some defi- throughout this article. 
, that momentum The quantum theory of measurement 
ly will disturb the tells us that, if a measurement is some- 
an unpredictable what imprecise, then the magnitude of its 
momentum mea- disturbance is somewhat but not entirely 
result is known in predictable. For example, a very careful 
, same as just ob- measurement of the east-west position of 
measurement is of an electron, with an imprecision Ax, can 
know the result in 

1 how the person 
nts-with the best 
D's, or the best of 
t of the 23rd cen- 
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be guaranteed to disturb its east-west 
momentum by not much more than 
Ap = h/(2Ax), where h (- 1.054 x 10-7 
cm g cm/sec) is Planck's constant. How- 
ever, no matter how careful the measure- 
ment may be, the momentum uncer- 
tainty afterward will be at least h/(2Ax). 
Similarly, a momentum measurement of 
precision Ap will leave the position un- 
certain by at least Ax = h/(2Ap)-but if 
the measurement is very careful, the po- 
sition disturbance need not be much 
larger than this. The limit AxAp _ hi2, 
which holds for either type of measure- 
ment, is called the Heisenberg uncer- 
tainty principle. 

The ultimate limits imposed by the un- 
certainty principle have been explored in 
great detail during the past decade by C. 
W. Helstrom, R. L. Stratanovich, J. P. 
Gordon, and others. They have devel- 
oped a beautiful, mathematical theory of 
optimum quantum mechanical measure- 
ments (quantum detection and estima- 
tion theory) (5). Unfortunately, this the- 
ory assumes one can make a precise 
measurement of one observable or an- 
other, or of some combination of observ- 
ables; but it does not spell out how such 
precise measurements can be realized 
technically-even in principle. 

This gap in the theory is being con- 
fronted today in the effort to detect cos- 
mic gravitational waves (6). Gravity- 
wave detectors consist of aluminum (or 
sapphire or silicon or niobium) bars, 
weighing between 10 kilograms and 10 
tons, which are driven into motion by 
passing waves of gravity. The motions 
are very tiny: for the gravity waves that 
theorists predict are bathing the earth, 
a displacement 8x 10-19 centimeter 
might be typical (6). And this displace- 
ment may oscillate, due to oscillations of 
the gravity wave, with a period P - 10-3 

second. To see the details of the gravity 
wave, one must thus make repeated 
measurements of the bar's position with 
precision Ax ' 10-19 cm, and with time 
intervals between measurements of 

< 10-3 second. 
For all measurements ever made in the 

past on a heavy bar, the effects of quan- 
tum mechanics were totally negligible; 
the classical mechanics of everyday ex- 
perience gave a perfectly adequate de- 
scription of the bar's behavior. But one 
never before tried to make measure- 
ments of such enormous precision as 
10-9 cm. If the bar is suspended freely 
like a pendulum, as it is in some detec- 
tors (6), then over time intervals 

- 
10-3 second it will behave as though 

it were not suspended at all. It will be as 
free to move horizontally as the electron 
described above-and like the electron it 
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will be subject to the laws of quantum 
mechanics: an "initial" measurement of 
the bar's east-west position with preci- 
sion Axi - 10-9 cm will inevitably dis- 
turb the bar's east-west momentum by 
Ap > (h/2Axi), and correspondingly will 
disturb its velocity by Av = Aplm > (h/ 
2mAxi), where m is the bar's mass. Dur- 
ing the time interval # - 10-3 second be- 
tween measurements, the mass will 
move away from its initial position by 
an amount, AXm = AP T > (h7/2mAxi), 
which is unpredictable because Av is un- 
predictable. Putting in numbers (# = 10-3 

second, m = 10 tons, Axi = 10-19 cm), 
we find Axm > 5 x 10-19 cm-which is 
somewhat larger than the desired preci- 
sion of our sequence of measurements. If 
the next measurement reveals a position 
changed by as much as 5 x 10-19 cm, we 
have no way of knowing whether the 
change was due to a passing gravity 
wave or to the unpredictable, quantum 
mechanical disturbance made by our 
first measurement. In effect, our first 
measurement plus subsequent free mo- 
tion of the bar has "demolished" all pos- 
sibility of making a second measurement 
of the same precision, Ax - 10-9 cm, as 
the first, and of thereby monitoring the 
bar and detecting the expected gravity 
waves. 

In principle one can circumvent this 
problem by making the bar much heavier 
than 10 tons (recall that Axm is inversely 
proportional to the mass). However, this 
is impractical. In principle another solu- 
tion is to shorten the time between mea- 
surements (recall that Axm is directly 
proportional to T). However, this will 
weaken the gravitational-wave signal 
(6XGW cx for T 10-3 second) even 
more than it reduces the unpredictable 
movement of the bar (Axm c T). 

The best solution is cleverness: find 
some way to make the gravity-wave ef- 
fect stronger; this is being done in laser- 
interferometer gravity-wave detectors 
(6), but only at the price of having to 
make 10-16 cm measurements of the rela- 
tive displacement of two bars as far apart 
as several kilometers. Alternatively, find 
some way to circumvent the effects of 
the Heisenberg uncertainty principle- 
that is, some way to prevent the inevi- 
table disturbance due to the first mea- 
surement, plus subsequent free motion, 
from demolishing the possibility of a sec- 
ond accurate measurement: a quantum 
nondemolition (QND) method. 

One QND method which could work 
in principle is this: instead of measuring 
the position of the 10-ton bar, measure 
its momentum with a small enough initial 
error, Api - 10-9 g cm/sec, to detect the 
expected gravity waves. Thereby inevi- 

tably disturb the bar's position by an un- 
known amount Ax > h/2Api - 5 x 10-19 
cm. Wait a time T- 10-3 second and 
then make another momentum measure- 
ment. As the bar moves freely between 
the measurements, its momentum re- 
mains fixed. The uncertainty Ax in the 
bar's position does not by free evolution 
produce a new uncertainty Apm in the 
momentum. Consequently the second 
measurement can have as good accura- 
cy, 10-9 g cm/sec, as the initial measure- 
ment; and a momentum change of (a 
few) x 10-9 g cm/sec due to a passing 
gravity wave can be seen. 

Momentum measurements can be 
quantum nondemolition, but position 
measurements cannot be, for this simple 
reason: in its free motion between mea- 
surements the bar keeps its momentum 
constant, but it changes its position by 
an amount 8x = (p/m)r that depends on 
the momentum, and that therefore is un- 
certain because of measurement-induced 
uncertainties of the momentum. We say 
that momentum is a QND6 variable, but 
position is not. 

Unfortunately, however, it is far eas- 
ier to measure position than momentum. 
Nobody has yet invented a technically 
realizable way of making momentum 
measurements with the required preci- 
sion. 

The problem of inventing a technically 
realizable QND measurement scheme 
was first posed in 1974 (8). This refer- 
ence also formalized the concept of 
QND measurements. Subsequent devel- 
opments in the theory of QND are due 
largely to Unruh (9, 10); Braginsky, Vo- 
rontsov, and Khalili (11, 12); Caves, 
Thorne, Drever, Zimmermann, and 
Sandberg (13-15); and Hollenhorst (16). 
All of this work has been theoretical: it 
has shown that in principle QND mea- 
surement schemes can completely cir- 
cumvent the disturbing back-action ef- 
fects of one's measurements, and it has 
led to several tentative designs for prac- 
tical QND measurements in gravity- 
wave detectors-designs which do not 
involve measuring momentum. 

Actual laboratory work on QND mea- 
surement schemes is only now beginning 
to get under way, and the levels of sensi- 
tivity required are so great that we can- 
not hope for any laboratory results until 
several years from now. Nevertheless, it 
is reasonable to expect QND measure- 
ments to be a routine part of gravity- 
wave technology by the late 1980's. 

The purpose of this article is to make 
as wide an audience as possible aware of 
these developments, so that people can 
begin to ask whether the QND idea 
might be useful in other areas of science 
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and technology. To achieve this purpose technique whose back action on the os- 
effectively, we feel it necessary to write cillator, together with subsequent free 
the rest of this article at a somewhat evolution, does not substantially disturb 
technical level. We hope thereby to con- the probability distributions of the ob- 
vey to physicists, engineers, chemists, servables being measured-a QND tech- 
and others familiar with elementary nique. In the following sections we shall 
quantum mechanics and elementary describe the theory of such QND mea- 
electronics, a deep enough understand- surement techniques as applied to oscil- 
ing of the QND idea that they can begin lators, to free masses, and more general- 
to think creatively about it themselves. ly to any quantum mechanical system. 

Throughout our description we shall try 
to give short, elementary proofs of most 

Resonant-Bar Gravitational-Wave of the results quoted. More elegant and 

Antennas rigorous proofs will be found in the pri- 
mary literature. To understand our dis- 

Although the QND idea is explained cussion, the reader must be familiar with 
most easily, as we have done, in terms of elementary quantum mechanics and ele- 
bars which move freely (free masses), mentary electronic circuit theory, but 
QND measurements are most needed for little other specialized knowledge should 
a different type of gravity-wave antenna: be needed. 
one made of a bar which oscillates me- 
chanically in its fundamental mode (bar 
mass, m n 10 to 10,000 kg; oscillation General Theory of Quantum 
frequency, /27r - 500 to 10,000 hertz) Nondemolition Measurements 
(6). The expected gravity waves should 
produce changes of oscillation amplitude Consider a system, such as an oscilla- 
8x - 10-18 to 10-19 cm, which are less tor, that has some observable A which 
than or of order the width of the quantum an experimenter wishes to monitor. For 
mechanical wave packet of the oscillator the moment, assume that the system's 
&xQM = (h/2mw)12, if the oscillator is in its only coupling to the external world is 
ground state or in a coherent (minimal- through the experimenter's measuring 
wave-packet) state. Here, by contrast apparatus. We define a QND measure- 
with nuclear, atomic, and elementary- ment of A as a sequence of precise mea- 
particle physics, there is only one quan- surements of A such that the result of 
tum mechanical system being measured each measurement is completely predict- 
(the oscillator), rather than an ensemble able from the result of the first measure- 
of systems; and we must make a continu- ment-plus, perhaps, other information 
ous sequence of measurements on this about the initial state of the system. This 
one system. definition, and the ramifications which 

Such an oscillator will actually behave follow, are a refinement by Caves [in 
quantum mechanically even in the pres- (15)] of Braginsky and Vorontsov's (8) 
ence of thermal Brownian motion and at original concept of quantum nondemoli- 
bar temperatures kT >> ho, so long as tion. A similar refinement has been de- 
its quality factor Q is sufficiently high- veloped independently by Unruh (10). 
that is, so long as the fundamental mode Quantum nondemolition measure- 
of the bar is coupled sufficiently weakly ments are ideal tools for use in the detec- 
to the other, thermalized modes (7). In tion of weak external forces (such as 
particular, when one is making energy gravity waves) that act on the system. 
measurements which put the oscillator in One need only perform a QND mon- 
an energy eigenstate, Brownian motion itoring of the evolution of A and watch 
during one cycle will change the number for deviations from the predicted evolu- 
of quanta n in the oscillator by less than tion. 
unity if (7) Most observables cannot, even in 

(n + /)kTlQ <r Ahl4T (la principle, be monitored in a QND way. (n + ~)kT/Q < ho/4l7r (la) . In any precise measurement of an ob- 
and if one is making amplitude measure- servable A, the back action of the mea- 
ments, Brownian motion during the mea- suring apparatus uncontrollably and un- 
surement time i will change the ampli- predictably kicks all observables C 
tude by less than the coherent-state which fail to commute with A; and then, 
wave-packet width (h/2mo)112 if (7) in the subsequent free evolution of the 

2kTrQ < (lb) system, the contamination in C may be 
2kTQ<I (lb) fed into A, making the results of future 

(see Eqs. 40 and 41 below). measurements of A unpredictable. Only 
In order to monitor the effects of a very special observables can be immune 

weak gravity-wave force on such an os- to such feedback contamination; they 
cillator, one must use a measurement are called QND observables [or some- 
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times generalized QND observables 
(15)]. Mathematically, A is a QND ob- 
servable if and only if, when the system 
is evolving freely in the Heisenberg pic- 
ture, A commutes with itself at the dif- 
ferent moments of time tj, tk when one 
makes one's measurements (10, 15) 

[A(tj), A(tk)] = 0 (2) 

If this condition is satisfied at all times tj 
and tk, then A is called a continuous 
QND observable; if it is satisfied only at 
special times, then A is a stroboscopic 
QND observable. If A is conserved dur- 
ing free evolution (dAldt = 0), then it is 
guaranteed to satisfy Eq. 2 for all tj, tk 
and therefore to be a continuous QND 
observable. 

In the case of a free particle, the ener- 
gy and momentum are conserved and are 
continuous QND observables, but the 
position is not: x(t + r) = x(t) + pr/m, 
so 

[.(t),X(t + T)] = i/inlm (3) 
Precise measurements of perturb 5 un- 
controllably, and the contamination in p 
subsequently feeds back into x as the 
particle moves freely. 

For a harmonic oscillator the position 
and momentum satisfy the commutation 
relations 

[x(t), (t + r)] = (ifi/mo) sin oT (4a) 

[f(t), p(t + T)] = ihmw sin oT (4b) 

These imply that x and p are not continu- 
ous QND observables. However, if one 
makes one's measurements stroboscopi- 
cally at times separated by an integral 
number of half-periods (r = k7r/ro; sin 
wt- = 0), then the commutators in Eqs. 
4a and 4b vanish. This means that x and 
p are stroboscopic QND observables 
(12, 13). Stroboscopic QND measure- 
ments (12, 13) of x or p drive the oscilla- 
tor into a state where x is known precise- 
ly-for example, at moments t = klr/w 
and J is known precisely at t = (k + )7r/ 
o; but at other times x and p are highly 
uncertain. For an oscillator the con- 
served quantities, which are guaranteed 
to be QND observables at any and all 
times, include the energy (8) and the real 
and imaginary parts of the complex am- 
plitude (13) 

X1 = x(t) cos ot - [p(t)/mw] sin ot (5a) 

X2 = x(t) sin ot + Lp(t)/mw] cos ot (5b) 

High-precision measurements of X1 or 
X2 (whether fully QND or not) are called 
back-action-evading measurements (14, 
15) because they enable the measured 
component of the amplitude (for ex- 
ample, X1) to avoid back-action con- 
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tamination by the measuring device 
the price of strongly contaminating 
other component (X2). (The uncerta 
relation 

AXX1X2 > h/2mw 

is enforced by the commutation relat 
UX1, X2] = ih/m(, which follow f 
[, 1p = ihi.) 

Let A be a QND observable whic 
to be monitored by a sequence of pei 
QND measurements at times to, ti 
.... Since A(to) and A(t3) comr 
(QND assumption; Heisenberg picti 
one can perform a perfect "state-pr 
ration measurement" at time to, w 
puts the system into a simultaneou 
genstate I\o) of the observables A 
A(tt), A(t2), . . with some (not 
viously predictable) eigenvalues A 
A(t1), A(t2), .... From the results of 
first measurement one can compute 
eigenvalues A(to), A(t1), A(t), .... 
er, as the system evolves freely, its 
l0o) remains fixed in time, while its 
servable A evolves through the va 
A(t1), A(t2), .... Subsequent pe: 
measurements of A at times ti, t2, 
must give the known eigenvalues A 
A(t2) and must leave the state of the 
tem Itlo) unchanged. If A is a contint 
QND observable, then the QND s 
surements can be made continuol 
and each measurement can last as 
or as short a time as one wishes. If A 
stroboscopic QND observable, 
each measurement must be made 
quickly (stroboscopically) to avoid 
tamination. Examples will be given 
low, and further detail will be four 
section IV of (15). 

The apparatus used in any meas 
ment consists of a sequence of sta 
through which information flows to\ 
the experimenter's eyes and brain. I 
surement theory asserts that, althc 
the early stages of the apparatus ma3 
have quantum mechanically, the 
stages must be classical. There is no 
versally accepted definition of class 
We shall regard a stage as classical i 
quantum mechanical uncertainties 
and of subsequent stages have no sit 
cant influence on the overall accura? 
the measurement. If the system b 
studied interacts directly with a clas 
stage, the measurement is called di 
When, between the system and the 
classical stage, there is a quantum s 
(quantum mechanical readout sys 
QRS), the measurement is called ind 
(17). For example, the measuremet 
the position of a particle by its bl 
ening of a photographic plate is di 
The measurement of position by the 
ticle's scattering of light or of an elec 
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e, at is indirect. The vast majority of measure- 
; the ments are indirect. In electronic measur- 
iinty ing systems the first classical stage is of- 

ten the first amplifier. 
In deducing quantum limitations on 

the sensitivity of a specific measuring 
tions scheme, one must analyze quantum me- 
from chanically everything that precedes the 

first classical stage. The overall accuracy 
:h is of the measurement is governed not only 
rfect by quantum fluctuations in the quantum 
, t2, stages, but also by the details of the cou- 
nute plings between those stages and between 
ure), them and the measured system. These all 
^epa- influence the signal which enters the first 
hich classical stage, and that signal ultimately 
s ei- determines the quantum errors of mea- 
i(to), surement. 
pre- In practice, if not in principle, the re- 
t(to), duction of the wave function occurs 
fthis when the signal enters the first classical 

the stage. If that signal carries information 
Lat- not only about the observable A which 
state interests us, but also about observables 
> ob- C that fail to commute with A, an exact 
dues measurement is impossible. This is be- 
rfect cause any flow of information about C 
. . . into the first classical stage will, accord- 

I(t1), ing to the uncertainty principle, be ac- 
sys- companied by unpredictable back-action 
uous forces into the quantum stages-back- 
mea- action forces which must ultimately con- 
usly, taminate all observables that fail to com- 
long mute with C, including A. 
i is a Because of this back action, the mea- 
then surement error must always exceed an 
very ultimate quantum limit. We shall derive 
con- that limit under the special assumption 
i be- that in the Heisenberg picture A and C 
id in are time-independent-either because 

they are constants of the motion such as 
sure- X, and k2, or because they are time- 
iges, evolving observables [such as x(t) and 
ward p(t)] evaluated at some fixed moment of 
vea- time [such as A = x(0), C - p(0)]. We 
ough assume that the "readout observable" of 
y be- the last quantum stage, QR, which 
late couples into the first classical stage, is 
uni- expressible as 

;ical. 
fthe QOR = J faA + rfC) (6a) 

of it where 
gnifi- [A,] 

= 
2iyh so AAAC > yh (6b) 

:y of 
)eing with y a real number. The time evolution 
sical of the readout observable QR is embod- 
rect. ied in the functionf and/or in the real pa- 
first rameters a and f,. Typically, a and f will 

stage be sinusoidal functions of time, which 
tem, are used to code and separate the A and 
irect C signals. We assume that the first clas- 
nt of sical stage (usually an amplifier) is equal- 
lack- ly sensitive to signals at the A and ( fre- 
rect. quencies. Then no matter how accurate- 
par- ly the first classical stage monitors OR, it 

:tron must give errors in A and C related by 

AA = (,8/a)AC, where a and f/ are the 
root-mean-square (r.m.s.) values of a 
and 38. These relative errors, combined 
with the uncertainty relation (Eq. 6b), 
imply the ultimate quantum limit 

AA > [(f3/a/)yh]/2 (6c) 

Return now to the general situation 
where A and C might be time-dependent. 
In order that the instantaneous signal at 
time t not contain any contaminant infor- 
mation about observables C(t) which fail 
to commute with A(t), it is necessary and 
sufficient that A(t) commute with that 
part of the Hamiltonian Hi(t) which de- 
scribes the interaction of the system with 
the measuring apparatus (1) 

[A (t),H1(t)] = 0 (7) 

In order that information about A enter 
the measuring apparatus, HI must de- 
pend upon A. Usually one achieves 
these conditions by direct coupling of A 
to some observable Mi of the measuring 
apparatus 

I, = KAfI (8) 

In summary, the condition in Eq. 7 
guarantees no direct, instantaneous back 
action of the measuring apparatus on the 
quantity A being measured; and the con- 
dition in Eq. 2 guarantees that variables 
C which have been contaminated by 
back action will not subsequently, by 
free evolution (with HI turned off), feed 
their contamination into A. Often, how- 
ever, Hi is turned on for a long time- 
even for all time. Then there is danger 
that Hi may catalyze an evolutionary 
feeding of C into A. One can be sure this 
does not happen if an analysis of the sys- 
tem plus measuring apparatus, including 
all couplings, reveals that [A(ti), 
A(t2)] = 0 for all times t1 and t2 at which 
signals enter the classical stage. How- 
ever, such a full analysis may be prohibi- 
tively difficult. 

Fortunately, in one common situation 
a full analysis is not necessary: Caves 
[in (15)] has shown that, if A is a 
continuous QND observable and HI con- 
tains no system observables except A, 
then the Heisenberg picture evolution 
of A with couplings turned on is identical 
to its free evolution, and consequently A 
is fully isolated from back action-both 
direct and indirect. Caves (15) has also 
proved "full isolation of A with fli 
turned on" under more general circum- 
stances. 

Just as H, might catalyze an indirect 
feeding of contaminated variables C into 
A, so also such feeding might be cata- 
lyzed by the coupling of the system to a 
classical external force F(t) (for ex- 
ample, to a gravitational wave). This 
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coupling is embodied in a piece of 
Hamiltonian 

HF = ,AFx 

where u is a coupling constant and x 
dynamical variable of the system ( 
position in the case of a gravitatic 
wave antenna). If A satisfies the 
commutation condition (Eq. 2) eve 
the presence of HF, then A can rer 
free from contamination. If, in addit 
free evolution with fF turned on cal 
an eigenvalue A(t) of A(t) to evolv 
such a way that, from a precise kn 
edge of A(t), one can deduce F(t), th( 
is called a QNDF observable [(15); 
also Unruh (10), where this is den, 
QNDD]. QNDF observables are i 
tools for monitoring weak, clas, 
forces. 

If, on the other hand, the term I 
the Hamiltonian catalyzes an evolul 
ary feeding of contaminated observa 
C into A (that is, if [A(tj), A(tk)] = 

the presence of HF), then althoug 
may be highly sensitive to the pres4 
of an external force, one cannot hot 
monitor the details of the force by r 
surements of A. 

In the case of an oscillator with I 
tion x coupled to the force (for exan 
a gravitational-wave detector), X, an 
(Eqs. 5) are QNDF observables and 
can be used for perfect monitoring o 
forces (13, 15). By contrast, the osc 
tor's energy, although a QND obs 
able, is not QNDF. As a result, pre 
measurements of the energy can re 
the presence of an arbitrarily weak fc 
but they cannot determine the stre 
of the force with a precision better th 
factor of 3 (13, 10, 15)-unless the f 
is so strong that it increases the en 
by an amount large compared to the 
tial energy. Examples and proofs wi 
sketched later. 

When one is using a quantum sy, 
to monitor a classical force F, one 
increase one's sensitivity by increa 
the response of the measured quanti 
to F. In (8) and (18) it is shown that, 
is the energy of an oscillator, F prod 
a change of A which is larger, the la 
the oscillator's initial energy. Form 
such a measuring scheme satisfies 
ruh's (10) general condition for the 
pendence of A's response on the ir 
state of the detector (detector-depen 
response, or DDR) 

[A, x] $ a C-number 

In the case of (8) and (18) A is the d( 
tor's (oscillator's) Hamiltonian, x i 
position, and [A,x] = -(ih/m)p. 
larger the initial energy of oscillation 
larger will be (p2), and the larger wi 
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'the dA/dt. Further details will be given lat- 
er. 

This completes our sketch of the gen- 
eral theory of QND measurements. This 

'is a theory will now be applied to various 
(x is types of measurements of harmonic os- 
nal- cillators, with emphasis on issues rele- 
self- vant to gravitational-wave detection. 
n in 
nain 
tion, Position Measurements 
uses 
,e in A resonant-bar gravity-wave antenna 
owl- is an oscillator with mass m, frequency 
en A co, position x, and momentum p, which 
see couples to a gravitational wave (classical 

oted external force F) with a coupling energy 
ideal HTF = -F(t). In most experiments the 
sical antenna's position x is coupled by a 

transducer (HI = K4q; K coupling 
IF in constant) to an electromagnetic circuit 
tion- (quantum readout system), which we 
lbles shall describe as an oscillator with ca- 
0 in pacitance C, inductance L, generalized 
;h A coordinate (equal to charge on the ca- 
ence pacitor) q, and generalized momentum 
>e to (equal to flux in the inductor) ir. More 
nea- complicated QRS's can be used; but this 

is the typical case. The voltage on the ca- 
posi- pacitor, which is proportional to 4, is 
iple, monitored by an amplifier-the first clas- 
d X2 sical stage of the measuring system. 
thus Thus 4 is the readout observable QR (see 
fthe Eqs. 6). 
:illa- The coupled antenna, force, and QRS 
;erv- are governed by the Hamiltonian 
icise 
veal P2 1 H= - + mcs2' )rce; 2m 2 
ngth #2 ^2 
an a + + 2 H + F+ I 2L 2C -orce 
ergy HF = -XF(t) fI = Kxq (11) 
m ini- 
ll be for which the Heisenberg evolution 

equations are 
stem ^ dx/dt = p/m can 
ising dp/dt = -mxo2 + F(t) - K4 
ity A ty A d4/dt = T/L 

uces dTr/dt = -/C - Kx (12) 

irger Because these equations ignore the first 
ally, classical stage (amplifier) and its detailed 
Un- back action on the QRS, they cannot tell 
de- us the actual sensitivity of the measuring 

iitial system. On the other hand, they can tell 
dent us the ultimate quantum mechanical limit 

on the sensitivity. 
Suppose, as a first case, that the signal 

(10) QR = 4 is fed continuously into the am- 
etec- plifier for a time much longer than a 
s its quarter-cycle of the antenna, and that 
The one's goal is to measure xo, the initial 
, the value of the oscillator's position. During 
1I be the measurement x(t), which feeds v and 

thence QR -, oscillates between x0 and 
P,. [x(t) = xc cos wt + (Pol/mc) sin wt, 
aside from minor modifications due to 
the couplings. Note that 0-o=Xi, 
Po/mo -X2; Eqs. 5.] Consequently, the 
signal QR entering the amplifier contains 
not only x0 but also, unavoidably, p0. 
Since their relative strengths in the signal 
are po/Xo = mo, the measurement deter- 
mines them with relative precisions 
Apo = moAxo. Taking account of the un- 
certainty relation Ax0Ap0o h/2, we find 
(19, 18, 12, 15) 

Axo = Apo/mro > (h/2mco)12 (13) 

(This is a specific example of the general 
quantum limit of Eqs. 6.) Such a mea- 
surement is called an amplitude-and- 
phase measurement because it gives in- 
formation about both the amplitude 
[Xo2 + (po/mro)2]12 and the phase ?0 = 
tan-' (po/mwxo) of the antenna's mo- 
tions. An ideal amplitude-and-phase 
measurement with the limiting sensitivi- 
ty in Eq. 13 drives the antenna into a co- 
herent (minimal-wave-packet) state. If 
such a measurement (state preparation) 
has put the antenna into a coherent state 
with (x(t)) = x0 cos c)t + (po/mw) sin o)t, 
then a classical force F = Fo cos(cot + p) 
acting for a time T >> 2rr/c) will leave 
the state coherent but change its am- 
plitudes by 8x0 = (Fo0/72mo) sin (p, 
8po/mo = (For/2mno) cos sp (15). A sub- 
sequent ideal amplitude-and-phase mea- 
surement can reveal this change if the 
force Fo exceeds the quantum limit (18) 

Fo (2/fT)(mwoh)"' (14) 

No amplitude-and-phase measurement 
can do better than this. 

An alternative derivation of the quan- 
tum limits in Eqs. 13 and 14, due to Gif- 
fard (19), takes detailed account of quan- 
tum fluctuations in the amplifier and their 
back action on the QRS. 

The quantum limits in Eqs. 13 and 14 
are traceable to the fact that x is not a 
continuous QND observable; a continu- 
ous measurement of x produces direct 
back action on p, which then con- 
taminates x through free evolution. On 
the other hand, x is a stroboscopic QND 
observable (see Eq. 4a). Consequently, 
by stroboscopic measurements (12, 13) 
at times t = 0, rr/cr, 2rr/o, . . . one can 
monitor x with perfect precision, in prin- 
ciple (except for the ridiculous limit from 
relativistic quantum theory, Ax :> h/mc 

10-41 cm for m = 10 kg). Stroboscopic 
measurements can be achieved with the 
system of Eq. 11 by pulsing on and off 
the transducer's coupling constant K. By 
a sequence of perfect stroboscopic mea- 
surements one can monitor an arbitrarily 
weak force Fo. 
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Perfect stroboscopic measurei 
require that X be coupled to the QI 
arbitrarily short time intervals r at i 
r/C, ... (and also that the QRS tr 

its information to the first classical 
in a time less than ,r/wt). If T is finite 
the momentum spread Ap 2 h/2Ax 
duced by a measurement of precisic 
causes a mean position s 
(Ax)s - (Ap/m)r hr/2mAx durin 
next measurement. The resulting 3 
error is (18, 12, 13) 

AXx ~ (hr/m)1/2 

The shorter the measurement time 
more accurate the measurement ca 

Unfortunately, short measurer 
require very strong coupling of th 
tenna to the QRS in order to surn 
the quantum mechanical zero-point 
gy that accompanies the signal th] 
the QRS and into the amplifier. T 
quantified in (20, 15, 14) for the cas 
mechanical oscillator with trans( 
and QRS that feed the amplifier a s 
oidal voltage signal 

Vs = V/ Kxig21lcos fit 

Here f (assumed >> 1/) is the 
frequency, K is the transducer's 
pling constant, and g2i is the tra 
function of the QRS. This signal c; 
an r.m.s. power Ps = (KxJg2l)2/4Re 
where Re(g22) is the real part of the 
put impedance of the QRS. Ac 
panying this signal in the experirr 
bandwidth 1/2r is a fluctuating qua 
mechanical zero-point power 

h fl/2r-half of it at the known phz 
the signal, the other half at the 
phase. This zero-point noise lea( 
Ax > (h/2mo)1/2 (1/f,or)t2, where 

(Klg211)2 

mowRe(g22fl) 

is a dimensionless coupling constan 
20). If one averages over N succe 
stroboscopic measurements (total 1 
width 1/2Nr), then the accuracy 
proves as N-/2 

Ax > (h/2mo)1/2 (1/ NwTr) 2 
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ments 
IS for 
t= 0, 
ansfer 
stage 

e then 
, pro- 
)n Ax, 

? OO __ _ Fig. 1. Scheme for 
coupling a mechani- 
cal oscillator's (posi- 
tion) - x2 to an elec- 
tromagnetic QRS. 

Optimization of the measurement time 
r in Eqs. 15 and 17 leads to an ultimate 
quantum limit for stroboscopic measure- 
ments with finite coupling (14, 15, 20): 

Troptimal= =8NW2)-1/2 

Ax ? (hi/mw)"'2(13N>" ' 4 

(18a) 

(18b) 

pread A coupling as large as = 1 is dif- 
g the ficult to achieve. Therefore, to beat 
r.m.s. the amplitude-and-phase quantum limit 

(h/2mwo)2, one will probably have to av- 
erage over a large number N of measure- 

(15) ments. 

r, the By a sequence of stroboscopic mea- 
in be surements at the quantum limit of Eq. 
ments 18b, one can monitor a classical force 

e an- F = Fo cos(wt + (p). If the phase sp is 

nount near ir/2 or 37r/2, then the optimal times 

ener- for the stroboscopic measurements are 

rough t = 0, r/o, 2r/ . ...; the force pro- 
his is duces during N half-cycles 6x 
e of a (7T/2)(NFo/mtw2), and the force is mea- 
ducer surable if 
sinus- Fo > (2/rT)(hmWo3)'/214 N-5'4 (19) 

If the phase p is near 0 or ir, then the 
(16a) precision of Eq. 19 is achieved by stro- 

signal boscopic measurements at t = 7/2o, 
cou- 3*r/2(, .... Since the phase of a gravi- 

Lnsfer tational wave is not predictable in ad- 

arries vance, two antennas are needed; one to 

(g2 ), 
be monitored at t = 0, Tr/w,. .., the 

o ut- other at t = 7r/20w, 3ir/2, ... (12, 13). 
:com- The stroboscopic limits of Eqs. 15, 17, 
lental 18, and 19 strictly speaking refer to a har- 

intum monic oscillator with only one degree of 

p = freedom. Unfortunately, a resonant-bar 

ase of gravitational-wave antenna has many 
other normal modes which can all be simulta- 

ds to neously perturbed by the back action of 
each measurement. However, if the 
strongly perturbed modes have commen- 
surate eigenfrequencies, then strobo- 

(16b) scopic QND measurements on the fun- 
damental mode are also QND for the 

ot ther modes (12), and results near the 
It (21, 
ssive limits of Eqs. 15 to 18 may be achiev- 

able. band- able. 
im- Stroboscopic measurements can be 

carried out on electromagnetic oscilla- 
tors [such as inductance-capacitance 

(17) (LC) circuits] as well as on mechanical 

oscillators. For example, one could send 
a collimated pulse of electrons through 
the capacitor so quickly that it spends a 
time r << 27r/ between the capacitor 
plates. The electrons will be deflected by 
the electric field of the capacitor, which 
is proportional to the oscillator's gener- 
alized coordinate q (- charge on plates); 
and by measuring the deflection one can 
infer q. A stroboscopic sequence of such 
measurements can reveal q, in principle, 
to an accuracy (hr/L)2 = (hC^02r)'/2 
(see Eq. 15) and can reveal the corre- 
sponding voltage in the capacitor to 
AV = (hw/C)1/2(Wr)Z2-which is a factor 
(WT)11/ better than the standard ampli- 
tude-and-phase quantum limit. 

Energy Measurements 

Suppose that one has developed a 
method for making accurate measure- 
ments of a harmonic oscillator (antenna), 
and that an initial "state-preparation" 
measurement has put the oscillator into 
an eigenstate with energy E0. A force Fo 
cos(wt + ) acting for time r will change 
the oscillator's state. Because the phase 
of the initial state is completely in- 
determinate, no interference terms show 
up in the new state's energy expectation 
value (22) 

(E) = Eo + W W- Fo22/8m (20a) 

However, interference is a dominant ef- 
fect in the variance of the new state's en- 
ergy (22) 

o-(E) = (2EoW)/2 (20b) 

The next measurement is likely to reveal 
a changed energy, and thereby tell us 
that a force has acted, if or(E) > ht. 
(Here we assume the force to be weak, 
W < E0.) Rewritten in terms of F0, this 
detection criterion is 

Fo>( -2- (21) 
\ no + (1) 

where no = Eo/ho - 1/2 is the number 
of quanta in the initial state. This force- 
detection method can be arbitrarily sen- 
sitive if no is made arbitrarily large (8, 
18). However, because there is no 
unique relationship between the mea- 
sured energy and Fo [-((E) >> (E) -Eo], 
this method cannot tell us the precise 
magnitude of Fo. In other words, the en- 
ergy is not a QNDF observable (13, 10, 
15); see the discussion following Eq. 9. 

A perfect energy measurement (per- 
fect up to one quantum) is possible only 
if (i) the interaction Hamiltonian fi for 
the oscillator and QRS involves the os- 
cillator energy fi, and (ii) f, commutes 
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with Ho'; see Eq. 7 and associated dis- 
cussion. 

If instead ft, = Kxq, as occurs in most 
measuring systems, then the directly 
measured quantity is x(t)-or the ampli- 
tudes ko and po0-and the measurement is 
of the amplitude-and-phase type with 
quantum limits Axo = Apo/mwo 2 
(h/2mw)112 (Eq. 13). From the measured 
x, and po one can compute the oscilla- 
tor's energy 

Eo = p02/2m + mo2x02/2 = (no + 1/2)ho 

up to an accuracy, for no >> 1 

AE = poApo/m + mw2XoAxo > no 12th 

(22) 

The effect of the force will be discern- 
ible if this error is less than or(E) (Eqs. 
20), which implies the same force- 
detection criterion (Eq. 14) as we de- 
rived from our original amplitude-and- 
phase discussion. 

One way to achieve an HI which in- 
volves Ho rather than x--and to there- 
by beat the amplitude-and-phase limit 
(Eq. '14)-is to make the oscillator's 
mass m and spring constant mw2 depend 
weakly on a variable q of the QRS: 
m = md(l + Kq), mo2 = m0w02(l + Kq) 
(10). Then the total Hamiltonian be- 
comes 

H HfO + HI + HQ RS 

fo = P2/2mo + mwo2x (23) 

t, = KqfIo 
where tQRs is the Hamiltonian of the 
free quantum readout system. Unruh 
(10) has given a pedagogical example of 
this for an electromagnetic oscillator: the 
"mass" m is an inductance; the "spring 
constant" mo2 is l/(a capacitance); and 
the inductor coil and capacitor plates are 
attached to a mechanical pivot with an- 
gular position 4, which varies the induc- 
tance and capacitance in the required 
manner. One can also vary the induc- 
tance and capacitance by letting the me- 
chanical QRS move appropriate materi- 
als in and out of the inductor and capaci- 
tor (II, 13). 

For a mechanical oscillator with elec- 
tromagnetic QRS there are also several 
ways to make the mass and spring con- 
stant depend on a QRS variable. In Fig. 1 
the oscillator's mass is attached to a 
movable capacitor plate of the QRS; the 
energy in the capacitor's electric field is 

E, = [1 - (x/d)2]^/2C (24) 

where C is the capacitance when x = 0; 
and consequently the charge q on the 
central plate of the QRS renormalizes 
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the spring constant to mo2 = m0o02- 
q2/2Cd2. The spring constant can also be 
renormalized by the QRS "momentum" 
7r (-= flux in inductor) by attaching the 
oscillator's mass to a current-carrying 
coil that resides between two oppositely 
wound coils of the QRS inductor. To re- 
normalize the oscillator's mass m one 
might attach to it a conducting plate that 
resides in the inductor's magnetic field. 
The velocity of the plate through the 
magnetic field would induce an electric 
dipole moment on the plate, which in 
turn would couple by its velocity to the 
magnetic field, giving an interaction en- 
ergy proportional to p2-2 and thence a 
mass renormalization. 

Unfortunately, these various ideas 
have not yet produced a viable design for 
clean coupling of a mechanical oscilla- 
tor's energy Ho to a QRS. On the other 
hand, designs without clean coupling can 
still yield measurements of Ho0 more ac- 
curate than the amplitude-and-phase 
quantum limit (no + 1/2)1"2h. An ex- 
ample is a QRS that couples only to x2, 
but that averages x2 over a number of cy- 
cles before sending it into the first classi- 
cal stage (amplifier) (9, 11). The mea- 
surement scheme of Fig. 1 will do this if 
the period of the circuit's (QRS) oscilla- 
tions is much longer than the period of 
the mechanical oscillations. Then the cir- 
cuit's capacitance (Eq. 24) and resonant 
frequency will be sensitive to the time 
average of 2I and thence to Ho, with only 
small admixtures of sensitivity to the 
time-varying part of x2 and thence to the 
oscillator's phase t. This is equivalent to 
the statement in Eq. 6 that R = 
f(f/o + a(fto)^) with a << 1, which in 
turn permits accuracies much better than 
AE = (no + 1/2)1/2ht. A detailed analy- 
sis of this type of scheme is given in (1i), 
but for an electromagnetic oscillator with 
a mechanical QRS and with qfi = Kx^2 
rather than Kx?q2 as in Fig. 1 and Eq. 24. 
That analysis reveals a limiting sensitivi- 
ty 

AE > (no + 12 (f/wo)112hw (25a) 
.1/2 

where E = (no + 1/2)ht is the oscilla- 
tor's energy, o is its frequency, fl is the 
frequency of the QRS, and 1f << w. The 
corresponding limit on the detection of a 
classical force Fo cos(wt + )p), which 
drives changes in the oscillator's energy, 
is 

Fo > 2 l nwh (25b) 

if w/fQ < no + 1/2. If wo/f > no + 1/2, 
then the limit on AE in Eq. 25a is re- 
placed by hw, the ultimate precision with 

which one can ever measure energy 
changes; correspondingly, the force limit 
in Eq. 25b is replaced by Eq. 21. 

In measurements of the time average 
of x2 and thence fHo, it is not essential 
that the interaction Hamiltonian ft in- 
volve X2. Instead fti can be proportional 
to x, and then the internal workings of 
the QRS can produce the average of x2 at 
the entrance to the first classical stage. 

Back-Action-Evading 

Measurements of X 

The QNDF observable X? = X cos wt 
- (pfim) sin wt (real part of complex 
amplitude; Eq. 5), like the position x, has 
a continuous spectrum of eigenvalues; 
and in principle it can be measured arbi- 
trarily quickly and accurately (13, 15). 
Suppose that an initial state-preparation 
measurement at t = 0 has put the oscilla- 
tor into an eigenstate Ilo) of X1(0) with 
eigenvalue eo. A classical force F(t) [to- 
tal Hamiltonian H = Hfo - xF(t)] will 
change X1 as seen in the Heisenberg pic- 
ture 

Xi(t) = 1(0) - [F(t')/mw] sin wt'dt' 

(26) 

In the Heisenberg picture the oscillator's 
state remains fixed in time at l1o), but 
this is an eigenstate of 1l(t) with eigen- 
value 

W(t) = o- f [F(t')/mw] sin wt'dt' 

(27a) 

Subsequent perfect measurements of TX 
must yield this eigenvalue and will reveal 
the full details of its evolution. It evolves 
in exactly the same manner as Xi would 
evolve for a classical oscillator (13, 15). 

One pays the price, in these measure- 
ments, of not knowing anything about 
the imaginary part of the complex ampli- 
tude X2 (Eq. 5c). However, if one has a 
second oscillator coupled to the same 
force F(t), one can measure the imagi- 
nary part 12 of its complex amplitude, 
giving up all information about the real 
part 1,. One's measurements must give 
the eigenvalue 

ft 
1(t) = 

no + F [F(t')/mw] cos wt'dt' 

(27b) 

which evolves in exactly the same man- 
ner as the X2 or Y2 of a classical oscilla- 
tor. From the output of either oscillator, 
or better from the two outputs, one can, 
deduce all details of the evolution of F(t), 
no matter how weak F(t) may be (13, 15). 
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Fig. 2. Scheme for 
stroboscopic or con- 
tinuous back-action- 
evading measure- . :: 
ments of a mechani- m 
cal oscillator. This 
scheme was devised ..... 
independently in 1978 L!! 
by V. B. Braginsky mw2 
and by R. W. P. Dre- 
ver, but has not pre- /// //// 
viously been pub- 
lished. 

Thus X1 and .2 are QNDF observables. 
A perfect measurement of X1 (or fi2) 

requires (i) that the interaction Hamil- 
tonian d/I depend on Xk and (ii) that fI1 
commute with Xi (Eq. 7 and associated 
discussion). The simplest example is 

Hi = KX1q = Kxq cos ot 

- (K/mr)p q sin t . (28) 

A coupling of this type can be 
achieved, for a mechanical oscillator, by 
using a capacitive position transducer 
with sinusoidally modulated coupling 
constant (Hi = KCxq cos wt), followed by 
an inductive momentum transducer with 
modulated coupling constant [Hi 
- (Klmno)pqj sin wt]. The two transducers 
together produce a voltage output 

V = aHI/aq 

= Kx cos wt - (K/lmo)p3 sin ot 

= KX1 (29) 

which drives an electromagnetic circuit, 
the QRS, in which the charge q flows 
(15). While capacitive position trans- 
ducers and inductive velocity trans- 
ducers are easy to construct, inductive 
momentum transducers are not. The mo- 
mentum and velocity of the oscillator are 
related by 

k = (Ho + H,)/p 
= plm - (K/mo)q sin wot (30a) 

which means that the classical Lagrangi- 
an L = px - (Ho + Hi) for oscillator 
plus transducers is 

1 1 
L = mx2 - m- t)2x2 - Kxq cos wt + 

2 2 

(K/o)xqq sin ot + 
I 

m(K sin ott/mo)2q2 

(30b) 

The first two terms represent the oscilla- 
tor, the third is the capacitive position 
transducer, the fourth is an inductive ve- 
locity transducer (wire, physically at- 
tached to oscillator, moves through ex- 
ternal magnetic field), and the last is a 
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negative capacitor in the QRS circuit. 
Thus, an inductive momentum trans- 
ducer is equivalent to an inductive veloc- 
ity transducer (easy to construct) plus a 
negative capacitor (hard) (15). Although 
negative capacitors are not standard 
electronic components, they can be con- 
structed in principle, and in principle 
they can be noise-free (15). 

For an electromagnetic oscillator with 
mechanical QRS, one can achieve the 
desired fi = KXiq using a capacitive 
transducer for the oscillator's position x 
(- charge in oscillator's capacitor) and 
an inductive transducer for its momen- 
tum p ( flux in oscillator's inductor). 
The momentum transducer turns out to 
involve a standard mechanical current 
transducer (current = x) plus a negative 
spring in the QRS (15). In principle nega- 
tive springs can be noise-free (15). 

The sinusoidal modulations required 
in the transducers must be regulated by 
an external, classical clock, which has 
the same frequency o as one's oscillator. 
One cannot use the oscillator itself as the 
clock because in extracting the required 
oscillatory information from the oscilla- 
tor one will produce an unacceptably 
large back action on X1. However, be- 
fore the experiment begins one can 
check the frequency of the clock against 
that of the oscillator. In principle they 
can be made to agree perfectly, and in 
principle the clock can be made fully 
classical so its outputs are real numbers, 
cos ot and sin wt, rather than operators 
(10, 15). In practice, frequency drifts and 
quantum features of the clock need not 
cause serious experimental problems 
(15, 20). 

A perfect measurement of J,, which 
lasts a finite time q, requires infinitely 
strong coupling in the transducers 
(K -- oo) in order to give a signal that 
overwhelms zero-point noise in the 
QRS. If one has only finite coupling, 
then the zero-point noise accompanying 
the signal gives rise to a limit (Eqs. 16 
and 17 with x -- X1 and Nr - ( T) (13-15) 

AX1- : (h/2mo) 1/2(/3o1)-Y"2 (31) 

Here /3 is the dimensionless coupling 
constant (Eqs. 16). Thus, whereas stro- 
boscopic measurements with limited 
coupling can beat the amplitude-and- 
phase limit by a factor of only (/t)-1/4 
(Eq. 18b with N = wo/'r), continuous 
back-action-evading measurements of X1 
can beat it by (/two)-1,2. Stroboscopic 
measurements are worse because of 
their smaller duty cycle. 

In the realistic case of weak coupling, 
/, < 1, one must average over many cy- 
cles (Ot) >> 1//) in order to sub- 
stantially beat the amplitude-and-phase 
limit. In this case one can make use of a 
trick analogous to measuring the energy 
by coupling to x2 and averaging: one can 
perform a "single-transducer, back-ac- 
tion-evading measurement" (13-15) by 
coupling to 

x cos wotos s t = 2 (1, + X1 cos 2ot 

+ X2 sin 2wt) cos fit (32) 

(that is, Hi = 2K2q cos wt cos fit) and 
then sending the signal through a filter 
(the QRS) with band pass at frequency 
f >>? and bandwidth Af= 1/27, 
<< o/27T. The filter will "average the X2 
signal away" until its amplitude has fall- 
en by 1/2t)o, relative to that of the X, 
signal. Since the initial r.m.s. X2 signal 
strength is l/V2 that of the Xi, this cor- 
responds to QR = f(XI + X2/2V/ wTr) 
in Eq. 6a, which together with the uncer- 
tainty relation in Eq. 5c and the argu- 
ment of Eqs. 6 tells us that (20) 

AX1 (h/2mo)2 (2h/2m)To,)- ' (33) 

This is the error in X1 due to back action 
from measurement of X2. The additional 
error due to zero-point noise accom- 
panying the Xi signal into the amplifier is 
(Eqs. 16 and 17 with x--> X and 
Nr -- ) (14, 15, 20) 

AX1 > (h/2mco)'2 (ToT)-1/2 (34) 

Here 1/2# is the bandwidth of the experi- 
ment (T is the larger of the QRS averag- 
ing time T*, and the averaging time in 
subsequent electronics). The ultimate 
quantum limit on the sensitivity is Eq. 33 
if f > 2V/,2*/, and Eq. 34 if 
,8 < 2V/2-*/q. Note that Eq. 34 is the 
same limit (to within factors of order 
unity) as in the case of exact coupling to 
X1 = cos o-t - (/mwo) sin ot. Thus, 
when /3 < 2V2/r*,/ and Co >> 1, one 
can abandon the momentum transducer 
without any serious loss of accuracy. 

This type of single-transducer, time- 
averaged, back-action-evading measure- 
ment of X1 appears today to be the most 
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viable technique for beating the ampli- 
tude-and-phase limit (Eq. 14) in gravita- 
tional-wave detection. In place of Eq. 14 
one will face the limiting measurable 
force 

Fo > (2/F)(moh)112 

x Max [(3OT)-1/, (2Vt2wr)- 2] (35) 

Thermal Noise in the Oscillator 

and Amplifier 

The quantum limits derived above are 
not achievable in the laboratory today 
because thermal noise exceeds quantum 
mechanical noise. 

Ignore for the moment thermal 
(Nyquist) noise in the oscillator. Then if 
the resistors in the QRS are cooled suffi- 
ciently, the dominant nonquantum noise 
will be that in the amplifier (first classical 
stage). The amplifier, which we assume 
to be linear, can be characterized by its 
power gain G and its noise temperature 
Tn. The QRS feeds the amplifier a signal 
at frequencyf = fl/2rr, to which the am- 
plifier adds a noise power per unit band- 
width 

dPn _ h 

df exp(hf/kTn) - 1 (36) 

These modified quantum limits are some- 
times called amplifier limits. It will never 
be possible, even in principle, to reduce 
these amplifier limits below the corre- 
sponding quantum limits (19, 24, 25). 

The best linear amplifiers that have 
been built are parametric amplifiers and 
maser amplifiers, which operate at mi- 
crowave frequencies and have (kTn/i) 
as small as - 10h. With such amplifiers 
one can only hope to get within a factor 
20 or /20 of our quantum limits 
(h -> 20h). And even to achieve this one 
must design a QRS which upconverts the 
oscillator's signal frequency (kilohertz in 
the gravitational-wave case) to the mi- 
crowave (gigahertz) region. 

Any physical oscillator (such as the 
fundamental mode of a gravitational- 
wave bar antenna) is weakly coupled to a 
thermal bath of dynamical systems 
(sound waves in the bar). This coupling 
produces a frictional damping of large- 
amplitude motions, and it also produces 
a thermal-buffeting random walk of the 
oscillator's amplitude (Nyquist noise). 
The r.m.s. random-walk change of the 
oscillator's amplitude during time r is 

(AXO)N,,,, = (ApO/mw)Ny0 

= (AXI) Nyq = (AX2)Nyq 

- (kT/mw2)"'2(f/eQ) 1/2 (40) 

which is driven at its resonant frequency 
fl by an external generator. In practice 
this circuit would be a microwave cavity 
(26). At the measurement times ot = 0, 
rT, 2rT, . . . the generator is turned on for 
a time r/2 and then turned off, and in an 
additional time r/2 the excitations in the 
circuit die out. During the brief on-time 
r, the amplifier sees a voltage signal 
Vs = (Vo/d) irx cos fit, where Vo/d is 
the amplitude of the oscillating electric 
field between the capacitor plates. The 
experimenter averages the amplitude of 
this signal (with alternating sign) over N 
measurements to determine the position 
x of the oscillator. 

It is straightforward to analyze the 
noise performance of this system by 
standard circuit theory. Alternatively, 
one can invoke the general formulas of 
Eqs. 15 to 19 for stroboscopic measure- 
ment schemes. Assuming that the resis- 
tor's physical temperature is less than 
the amplifier's noise temperature Tn f 10 
K, the amplifier noise dominates and in 
Eq. 18b we must replace h -) 2kTn/l. 
Assuming that the amplifier is properly 
impedance-matched to the circuit, the 
measurement will achieve the limiting 
precision (Eq. 18b) 

2kT,,/ fI 
12 

(mwi (42) 

Here k is Boltzmann's constant. If the in- Here T is the temperature of the thermal 
coming signal has power Ps, then the am- bath (the bar's temperature), and Q is the 
plified signal and noise have power (23) oscillator's quality factor (number of 

radians of oscillation required for fric- 

GPs + G + -Th? Af tional damping of large-amplitude oscil- 
exp(hA/kTn) - 1 2 lations by a factor e in energy). The cor- 

(37) responding r.m.s. energy change is 

Here Afis the bandwidth, and the hf/2 (AE)Nq (2EOk)2(/Q) (41) 
is a zero-point energy that accompanies These Nyquist noises must not exceed 
the signal throughout its trek through the the amplifier limits (quantum limits with 
amplifier and other electronics, but does h -- 2kTn/fl) if one is to achieve the am- 
not get amplified (23). The quantum lim- plifier limits in real experiments. Some 
its of previous sections of this article are numbers will be given below. 
attributable to this zero-point energy. In 
the presence of a real linear amplifier, 
with nonnegligible noise temperature Prospects for Stroboscopic Measurements 
Tn >> hfi/k and large gain G >> 1, the 
signal power Ps must fight not (hi/2)Af, One possible scheme for stroboscopic 
but rather measurements of a mechanical oscillator 

S 1 i~ ~ (gravitational-wave antenna with mass 
( lIA//T) 1+71 

i 
)Af m-10 kg and frequency co 3 x 104 

exp(h/kT,) 
- I G 2 

sec- ) is shown schematically in Fig. 2. 
kTn,Af (38) The mass of the oscillator is physically 

attached to the central, movable plate of 
(see Eq. 37). Consequently, it is reason- 

a capacitor (capacitance between outer able to expect that the amplifier noise capacitor capacit 
plates = C), which plays the role of will modify our quantum limits (Eqs. 6c,, 
transducer. The capacitor resides in the 

13-15, 17-19, 21, 22, 25, 31, and 33-35) 
by replacing h with (12) [r1QRS-a high-frequency LC circuit 

[frequency II = (LC)-1~' 101? sec-1], 
2kTn which has small losses [amplitude damp- 

h- fi (39) ing time r = 2(RC2)-1 << 0.1/c] and 

1 AUGUST 1980 

Comparison of the voltage signal with 
Eq. 16a reveals that Klg21 = 
(Vo/\2d)(flh); scrutiny of Fig. 2 reveals 
that the QRS output impedance, as seen 
by the amplifier, is g22 = 2r/C; con- 
sequently the dimensionless coupling 
constant of Eq. 16b is / = 
(Vo/d)2Cfl/(4mo 2). Combining this 
with the required pulse time = 
(f3NW2)-1/2 (Eq. 18a), we find 

igN= [ (Vo/d)2CNf 12/3 
/3N = ~ m4mw 3 (43) 

To avoid voltage breakdown in the ca- 
pacitor, its electric field amplitude 
should not exceed (Vo/d) 106 volt/cm. 
Assuming other reasonable parameters 
C- l pf, - 110 sec-1, N-1000, 
Tn- 10 K, m - 10 kg, and w 3 x 104 
sec-1, we find 

3N- 20 Ax 1 x 10-17 cm (44) 

Thus this system can achieve a sensitivi- 
ty that is a factor (20)1/4 2.1 below the 
amplitude-and-phase amplifier limit; but 
this is still an order of magnitude worse 
than the amplitude-and-phase quantum 
limit (h/2mw)1/2 -I x 10-18 cm. 

Nyquist noise in the antenna (Eq. 40 
with Cto = rrN) will be less than the mea- 
surement precision Ax- 1 x 10-17 cm if 
the antenna is cooled to 4 K and has a 
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quality factor Q 4 x 109. This is c 
parable to the best mechanical Q that 
been achieved (27) for a sapphire cr) 
at 4 K. 

Prospects for Single-Transducer 

Back-Action-Evading Measurements 

The configuration of Fig. 2 can als( 
used in a single-transducer, back-act 
evading measurement of X1. In this ( 
the circuit's amplitude damping t 
2(RCf2)- becomes the averaging 1 

r* of the QRS filter (previously it was 
stroboscopic pulse length), and we 
quire r >> l/o (previously it 
<< 1/o). Instead of being pulsed, 
generator's modulating voltage has 
steady-state form Vm = U0 sin fit sin 
which produces an electric field (V 
cos fl cos &t in the capacitors (V 
Uo0l/2w). That electric field, interac 
with the motions x = X1 cos ot + X' 
ot) of the mechanical oscillator, prodt 
a signal voltage 

Vs = (Vo/d)(fir/2) [X1 sin fit 

+ (2Wor)-'1X sin fit sin 2cot 

- (2Wor)-X2 sin fit cos 2wt] 

at the output of the QRS. Amplifica 
of this signal produces information at 
X, and X2 with relative accura 
AX, = (2\/2)T)1 AX2. 

Assuming that the resistor nois( 
negligible compared to amplifier n 
(which it will be if the physical tem 
ature of the resistors is somewhat 
than the noise temperature Tn = 10 
the amplifier), we can compute the n 

performance of this system from 1 
16, 33, and 34 with h - 2kTn/fl. The 
quality factor that has been achieved 
for a superconducting microwave r 
nator (our QRS circuit) with a narrow 
pacitive gap is Qe = flr/2 107, cc 
sponding to rT 10-3 second. Co] 
quently back-action forces (Eq. 33) 1 
the sensitivity to 

&X1 ( kTn1/fl)l2 1 

mw J (2/2ro,*)ll2 
2 x 10-18 cm 

a factor 9 below the amplitude-and-pi 
amplifier limit and approximately tv 
the amplitude-and-phase quantum li 
(Here we use T = 10 K, fl = 1010 se 
m = 10 kg, and o = 3 x 104 sec-l as 
fore.) In order that Nyquist noise in 
mechanical oscillator (Eq. 40) not 
ceed this sensitivity, the averaging 1 
must not exceed -- 0.01 sec. (Here 
use the same oscillator temperature 
Q as before, T = 4 K and Q = 4 x ] 
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om- To achieve the limit in Eq. 46 we also 
has require a coupling constant f3 - 2V/2r/T 

/stal - 0.3 (Eq. 34). To compute f3, first de- 
rive Klg2,, = (Vdd)(flr*/2V/2) from Eqs. 
16a and 45 with x--> X1; then evaluate 
the impedance seen by the amplifier in 
Fig. 2 at the X1 signal frequency 
f = (LC)-m2, g22 = 2r,/C; then eval- 
uate Eq. 16b 

o be 
ion- f = ((Vo/d)2Cfl7,/(16mo2) (47) 

case The required fi of 0.3 can be achieved 
time with the same electric field in the capaci- 
time tive gap as we used before: Vo/d = 1 x 
the 106 V/cm. 
re- This example and that of the last sec- 

was tion confirm that it is easier to achieve a 
the given level of sensitivity by continuous, 
the single-sensor, back-action evasion than 

i cot, by stroboscopic techniques. However, 
to/d) along the route toward realization of 
o = such experiments there remain a series 
ting of difficult experimental problems-not 
2 sin least of which is the frequency stability 
Ices of the clock that regulates the voltage 

generator. 

On the Limiting Frequency Stability 

(45) of a Generator 

Ltion Although current technology can 
bout achieve the frequency stability required 
.cies by the above examples, it is of longer 

term interest to know ultimate quantum 
e is mechanical limits on the stabilities of 
oise clocks. 
per- At present the world's most stable 
less clocks are the superconducting cavity 
K of stabilized oscillator (SCSO) (28) and the 
oise hydrogen maser (29). Both involve self- 
Eqs. excited electromagnetic oscillations in- 
best side a cavity. In the SCSO the clock fre- 
(26) quency fl is regulated by the cavity's 
eso- normal mode, and a change Al of a typi- 
v ca- cal dimension I of the cavity will produce 
)rre- a frequency change 
nse- 
imit InQ/QtAf/ Al/l (48) 

In the maser, if the electromagnetic qual- 
ity factory Qe of the cavity (Teflon 
bubble) exceeds kft x (mean time hy- 
drogen atoms spend in cavity)- fla, 

(46) then Eq. 48 will be true. Otherwise, 
Afl/fl - (AI/)(Qe/Qa), and the limit de- 

hase rived below is correspondingly modified. 
vice A quantum limit on the frequency sta- 
mit. bility of any electromagnetic oscillator 
Xc-l, satisfying Eq. 48 is derived in (30). The 
be- source of the limit is quantum fluctua- 
the tions in the deformation of the cavity 
ex- walls by electromagnetic stresses. Since 

time the stresses in the electromagnetic field 
we are equal to its energy density Hell3 

and (with fte the Hamiltonian of the electro- 
109.) magnetic oscillator), the force on the 

walls is fie/l, and this deforms the walls 
by 1 = ft/lk, where k is the mechanical 
spring constant of the walls. The electro- 
magnetic field is in a thermalized coher- 
ent state with no quanta, which possesses 
quantum fluctuations AHe > no12hfi; 
consequently, Al - no'2hfl/kl, which 
leads to frequency fluctuations (Eq. 48) 

Afl/fl > no'12hfllk12 (49) 

This electromagnetic back-action limit 
must be contrasted with the limiting pre- 
cision for measurements of fl during an 
averaging time f: Af > A//f, where 
AqJ n-112 is the quantum uncertainty in 
the phase of the oscillator's coherent 
state 

Afi/fi ;S no- /2 (fl,) 
- 

(50) 

(Townes-Schawlow limit). These two 
limits lead to an optimal number of quan- 
ta no and an ultimate quantum limit 

Af i h_ 12 

(51) 

For a cavity with wall thickness com- 
parable to cavity dimensions I, or for a 
"cavity" made by coating the outside of 
a dielectric crystal with superconducting 
material (31), the spring constant k is re- 
lated to the Young's modulus EM of the 
cavity walls by k -EMV/I, where V is 
the cavity volume. Then 

(51') 

In practice EM < 1013 dyne/cm2, V= 1 
cm3, so Afl/fl > 10-20 (T/1 sec)-1/2. This 
limit is achievable in principle, but cur- 
rent technology is far from it. 
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Several significant global climatic and 
tectonic events affected the evolution of 
Arctic oceanic climates during late Ce- 
nozoic time. The terminal Miocene tem- 
perature decline, culminating in the ma- 
jor expansion of the Antarctic ice sheet, 
and the concomitant worldwide lowering 
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about 3.5 million years ago (7, 8). These 
events coincided approximately with the 
emergence of the Isthmus of Panama, 
completed about 3 million years ago (9), 
which resulted in a salinity contrast be- 
tween salty North Atlantic and some- 
what fresher North Pacific surface wa- 
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of sea level that resulted in the isolation 
of the Mediterranean Sea about 5 million 
years ago (1) may have been synchro- 
nous with the onset of glaciation at high 
latitudes in the Northern Hemisphere. 
At that time, the Bering land bridge com- 
pletely isolated the Arctic from the Pacif- 
ic Ocean (2-5), and because circulation 
in the world ocean was primarily latitudi- 
nal, there was probably little interchange 
between Atlantic and Arctic waters (6). 

The sudden appearance of a flood of 
Pacific mollusks in Iceland indicates that 
the Bering land bridge was breached 
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ters (10) and in the reorientation of oce- 
anic circulation to a more vigorous 
south-north current. The Gulf Stream as 
we know it today may have evolved at 
about this time (6): The overall con- 
sequence of these events was the per- 
sistent influx into the western part of the 
Arctic Ocean basin of low-salinity North 
Pacific water through the Bering Strait 
(11) and the influx of a much larger vol- 
ume of salty Atlantic water into the east- 
ern part of the Arctic basin by way of the 
Norwegian Sea (10). 

This change in oceanic circulation led 
to intensified atmospheric circulation. 
Increased transport of moist air over an 
open and relatively warm North Atlantic 
Ocean to adjoining subpolar highlands 
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evidently resulted in the episodic devel- 
opment of local ice sheets large enough 
to lower sea level as much as 40 meters 
as early as 3.4 million years ago (12). The 
situation is somewhat analogous to the 
abortive high-latitude glaciation record- 
ed about 115,000 years ago during an 
early phase of the last glaciation (Wis- 
consin/Wiirm) (13). Continental ice 
sheets at least two-thirds as large as 
those of the late Pleistocene developed 
about 2.4 million years ago, shortly after 
the beginning of the Matuyama reversed 
epoch (12, 14). Latitudinal temperature 
gradients increased gradually, and by 
late Pliocene time the modern marine 
faunal provinces were established (15). 

Sedimentary Record in the Arctic Basin 

The continuous sedimentary record 
representing roughly the last 4.5 million 
years is preserved in deep-sea cores 
raised from bathymetric highs by the La- 
mont-Doherty Geological Observatory 
(LDGO) from ice platforms drifting over 
the central part of the Arctic basin (Fig. 
1 and Table 1). Despite certain ambi- 
guities, the radiometric dates (16) and 
magnetic stratigraphy (17) of these cores 
together with biostratigraphic and lith- 
ologic correlations (18-20) provide con- 
trol points for the time framework of this 
Pliocene and Pleistocene sequence (Fig. 
2). Three major climatic regimens, here 
represented by three stratigraphic units, 
can be recognized within this time inter- 
val. Rates of sedimentation were very 
low (1 to 3 millimeters per 1000 years) in 
all three units. 

The oldest unit (unit III) comprises sed- 
iments deposited between approximately 
4.5 and 2.5 million years ago and consists 
of fairly well sorted red clays containing 
manganese and micronodules. The botry- 
oidal micronodules, which constitute up 
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