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Initiation of Sulfate Activation: 

A Variation in C4 Photosynthesis Plants 

Abstract. In leaves of plants with C4photosynthesis, sulfur assimilation is initiated 
in bundle sheath cells whereas carbon and nitrogen assimilation are initiated in 
mesophyll cells. The activation of sulfate by adenosine triphosphate sulfurylase in 
leaves of C4 plants occurs in chloroplasts of bundle sheath cells and is effected by 
two isozymes of approximately equal activities that accountedfor 95 to 100 percent 
of the total leaf activity. 
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nitrogen metabolism are compartment- 
alized within specific cells and chloro- 
plasts. We also have found that the 
initial enzyme in sulfur assimilation, 
adenosine triphosphate (ATP) sulfuryl- 
ase, is compartmentalized. Approxi- 
mately 95 percent of the activity can be 
localized in the bundle sheath cell 
chloroplast. In the 18 C4 species exam- 
ined, only trace amounts of ATP sulfur- 
ylase activity is in the mesophyll cell. 
Our findings indicate that in C4 plants the 
first step in leaf sulfur assimilation pro- 
ceeds largely in the bundle sheath 
chloroplast. 
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Table 1. Intercellular localization of ATP sulfurylase in the leaves of various plants. Mesophyll 
protoplasts and bundle sheath strands were obtained from 0.5- to 1.0-mm leaf slices of 2- to 4- 
week-old seedlings. Incubation was in 0.5M sorbitol, 1 mM CaC12. 2 percent (weight to volume) 
cellulysin, 0.3 percent (weight to volume) pectinase, 0.1 percent bovine serum albumin (weight 
to volume) and 5 mM MES (4-morpholineethane sulfuric acid), pH 5.25. In some species 0.25 
percent Rohament P (Rohm, G.m.b.H., West Germany) was included. Incubation time at 30?C 
varied from 1 to 3 hours. Mesophyll protoplasts were harvested in a medium containing 0.5M 
sorbitol, 1 mM CaCl2, and 5 mM Hepes, pH 7.0; they were purified by a method similar to that 
of method 2 of Edwards et al. (9). Protein extracts were made in 100 mM tris (pH 8.2), 2 mM P- 
mercaptoethanol, 1 mM EDTA, and 1 percent PVP-40 (polyvinylpyrrolidone). Activity of ATP 
sulfurylase was determined by a bioluminescence assay (7). N.D., not detectable. 

Activities* 
Organism Whole Mesophyll Bundle sheath 

leaf protoplasts strands 

C4 plants 
NADP+-malate enzyme type 

Bothriochloa caucasica 29.3 1.6 54.3 
Cymbopogon martini 22.6 2.3 88.8 
Digitaria sanguinalis 42.2 6.0 91.9 
Echinochloa colonum 23.6 3.8 56.0 
Echinochloa crus-galli 18.4 1.4 72.6 
Euchlaena mexicana 24.1 2.4 64.4 
Pennisetum americanum 79.1 0.7 183.8 
Sorghum bicolor 22.4 1.9 93.8 
Zea mays 5.3 0.4 16.9 

NAD+-malate enzyme type 
Chloris distichophylla 26.6 N.D. 36.8 
Eleucine indica 16.2 0.8 21.5 
Panicum bergii 24.4 0.8 39.7 
Panicum miliaceum 10.9 N.D. 15.5 

PEP-carboxykinase type 
Brachiaria erucaeformis 20.0 3.2 64.3 
Chloris gayana 28.7 1.1 53.2 
Panicum maximum 35.5 2.5 37.8 
Panicum molle 33.0 4.1 67.2 
Urochloa mosambicensis 51.2 0.5 162.9 

C3 plants 
Avena sativa 26.7 N.D. N.D. 
Triticum aestivum 41.9 N.D. N.D. 

CAMt plant 
Kalanchoe daigremontiana 11.2 N.D. N.D. 

*Micromoles of ATP produced per milligram of chlorophyll protein per hour. tCrassulacean acid metabo- 
lism. 
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ATP sulfurylase (E.C. 2.7.7.4) cata- 
lyzes the ATP-dependent activation of 
sulfate to adenosine 5'-phosphosulfate 
(APS) with the release of pyrophosphate 
(PPi). The activity of ATP sulfurylase, 
determined as APS- and PPi- dependent 
ATP synthesis (5), was measured in 
whole leaf, mesophyll, and bundle 
sheath extracts of various C4 plants 
(Table 1). This study included three 
types of C4 plants: NADP--malate (E.C. 
1.1.1.40) enzyme, NAD+-malate (E.C. 
1.1.1.39) enzyme, and phosphoenolpyru- 
vate (PEP) carboxykinase (E.C. 
4.1.1.32). In all species, more than 95 

percent of the activity is associated with 
the bundle sheath extracts (6). This find- 
ing is consistent with our report that in 
Digitaria sanguinalis ATP sulfurylase 
was enriched in the bundle sheath cell 
fraction (7). The whole leaf activities re- 
ported in Table 1 are intermediate be- 
tween the mesophyll and bundle sheath 
activities, consistent with an enrichment 
of activity in the bundle sheath. The 
whole leaf activities also are within the 
same activity ranges found in C3 and 
CAM species reported here (Table 1) and 
previously (5, 8). 

To localize the ATP sulfurylase activi- 

Fig. 1. Isozymes of ATP 
sulfurylase in different pro- a Bundle sheath chloroplast 
tein extracts of Panicum 8- Bundle sheath strand 
miliaceum. Mesophyll pro- 
toplasts, bundle sheath , Meshy protoplast 
strands, and bundle sheath Whole leaf 

chloroplasts were obtained 
as described in the legend a 6- 
to Table 2. Disc elec- 
trophoresis was performed o 
on 6 percent polyacryl- o 
amide gels (15 mA per gel) o 
under nondenaturing con- E 4- 
ditions. The gel was run 
with 68 ,/g of whole leaf 3 - 
protein, 90 ug of mesophyll E 

protein, 12 /,g of bundle b 

sheath strand protein, and 2- \ 
26 /ug of bundle sheath !i 
chloroplast protein. The \ 
activity of ATP sulfurylase 1- . \ 

-...0 ..... ........ ....-'"?'. ' / /\ - \ '..- ' . . . . n , 
in these protein extracts ..- 'na 
was 0.31, 0.05, 0.44, and - -- t. -i ---- 
0.53 /tmole of ATP pro- 0 1 2 3 4 5 6 7 8 9 

duced per miligram of pro- Migration distance (cm) 
tein per hour, respectively. The gel was sliced into 2-mm sections, and each section was placed 
into 100 xl of 50 mM tris (pH 8.2), 1 mM EDTA, and 1 mM /-mercaptoethanol. After 3 hours at 
2?C the fractions were assayed for ATP sulfurylase as indicated in Table 1. Between 10 and 15 
percent of the original activities placed on each gel were recovered in assays of the gel slices. 

ty intracellularly, bundle sheath pro- 
toplasts were lysed and subjected to dif- 
ferential centrifugation. Bundle sheath 
protoplasts isolated from Panicum mili- 
aceum were fractionated into cytosol, 
chloroplast, mitochondrial, and per- 
oxisomal fractions as shown by the sepa- 
ration of NADP+-glyceraldehyde 3-phos- 
phate dehydrogenase, cytochrome c oxi- 
dase, and catalase activities, respectively 
(Table 2). The ATP sulfurylase activity 
was in the same fraction as the chloroplast 
marker enzyme. Similarly, in Urochloa 
mosambicensis ATP sulfurylase activity 
followed the activity of another chloro- 
plast marker enzyme, RuBP carboxy- 
lase, in differential centrifugation of 
bundle sheath protoplast extracts. Here 
98 percent of the chloroplast marker 
enzyme and 94 percent of the ATP 
sulfurylase activity were found in the 
chloroplast fraction sedimenting at 300g 
(Table 2). 

ATP sulfurylase activity could not be 
detected in mesophyll protoplasts isolat- 
ed from U. mosambicensis. A high activ- 
ity of NADP+ glyceraldehyde 3-phos- 
phate dehydrogenase (E.C. 1.2.1.9) was 
found in this same preparation, however, 
which indicates that soluble proteins 
were not lost during chloroplast isola- 
tion. In mesophyll protoplasts isolated 
from a C3 plant, Avena sativa, 71 percent 
of the chloroplast marker enzyme and 82 
percent of the ATP sulfurylase were 
found in the fraction sedimenting at 300g 
(Table 2). Collectively, these findings in- 
dicate that ATP sulfurylase is chloro- 
plastic in both C3 and C4 plants. In C4 
plants, however, the enzyme apparently 

Table 2. Intracellular localization of ATP sulfurylase. Mesophyll (M) protoplasts were obtained as described under Table 1. Bundle sheath (BS) 
protoplasts from P. miliaceum were obtained as described by Edwards et al. (9) except that the plant material was 5 days old (10). Bundle sheath 
protoplasts were obtained from 10- to 15-days-old U. mosambicensis (11). Purified mesophyll and bundle sheath protoplasts were ruptured by 
several passes through a 50-AL1 Hamilton syringe in a medium containing 0.3M sorbitol, 2mM EDTA, 1 mM MgCl,, 1 mM MnCl,, 50 mM Tricine 
(pH 8.0), 2 mM cysteine, and 1 percent PVP-40 (weight to volume). After breaking, BSA was added to a final concentration of 0.1 percent 
(weight to volume). The protoplast extracts were centrifuged for 3 minutes at 300g to remove the chloroplasts and the supernatant was 
then centrifuged for 10 minutes at 10,000g to sediment the mitochondria and peroxisomes. After centrifugation most of the mitochondria were 
in the 10,000g pellet fraction while a large portion of peroxisomes remained in the supernatant. All fractions were supplemented with Triton 
X-100 to a final concentration of 0.1 percent prior to assay. ATP sulfurylase was assayed as indicated in Table 1, and the organelle marker en- 
zymes NADP+ glyceraldehyde-3-phosphate dehydrogenase (G3PDH), catalase, and cytochrome c oxidase were assayed as described (12). 

Activities* 
Plant type Cell Whole 

and species type E ool3g 10,000g Super- 
extract pellet pellet natant 

planextract 
C4 plants 

BS ATP sulfurylase 
NADP+ G3PDH 
Catalaset 
Cytochrome c oxidase 

BS ATP sulfurylase 
RuBP carboxylase 

M ATP sulfurylase 
NADP+ G3PDH 

M ATP sulfurylase 
NADP+ G3PDH 

C3 plant 

23 
468 
53 

102 
163 
212 

N.D. 
1218 

10 
856 

16.2 (71%) 
396 (66%) 

15 (23 %) 
N.D. 

145 (94 %) 
212 (98%) 

N.D. 
974 (68 %) 

7.7 (82 %) 
497 (71 %) 

N.D. 
110(18%) 
12 (19%) 
67 (100%) 

N.D. 
N.D. 
N.D. 

78 (5 %) 

N.D. 
82 (12 %) 

6.6 (29 %) 
92 (16%) 
37 (58 %) 

N.D. 
10 (6 %) 
4 (2%) 

N.D. 
380 (27 %) 

1.7 (18%) 
117 (17%) 

*Micromoles per milligram of chlorophyll of the original extract per hour. tTimes 103. 
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is restricted to the chloroplasts of the 
bundle sheath cells. 

To verify this conclusion, we sought to 
identify cellular and subcellular activities 
of the enzyme utilizing preparative gel 
electrophoresis. Two isozymes could be 
identified in the whole leaf protein ex- 
tract (Fig. 1). The activity was approxi- 
mately equal in the two isozyme frac- 
tions. Both isozymes were present in ex- 
tracts of bundle sheath strands and 
bundle sheath chloroplasts (Fig. 1). The 
bundle sheath chloroplasts were en- 
riched in the specific activity of the en- 
zyme, which is consistent with our find- 
ings in Table 2. Further, both isozymes 
appeared in approximately the same ra- 
tio as observed in the whole leaf extract. 
Trace amounts of both isozymes were 
detected in the extract prepared from 
mesophyll protoplasts (Fig. 1), presum- 
ably because of a minor contamination of 
bundle sheath protoplasts in this prepa- 
ration (compare with Table 1). In this ex- 
periment (Fig. 1) both protoplast types 
were isolated simultaneously from very 
young tissue. 

We have found the activity of ATP sul- 
furylase to be largely in bundle sheath 
cells of a variety of C4 plants. Within this 
cell type two isozymes exist, both of 
which are chloroplastic. It is not known 
whether the entire process of sulfur as- 
similation to the reduced level of cys- 
teine is compartmentalized in leaves of 
C4 plants. Recently, thiosulfonate reduc- 
tase sulfite reductase activity was 
shown in both mesophyll and bundle 
sheath cells of D. sanguinalis, with the 
bundle sheath extracts containing two to 
three times more activity than did meso- 
phyll cell extracts (7). While the con- 
sequences of cellular compartmentation 
during sulfur assimilation have yet to be 
examined fully, it is clear that sulfur 
activation has been modified in the leaves 
of C4 plants, with the initial step of 
sulfate activation occurring primarily in 
one chloroplast type of the leaf. The 
cellular compartmentation of sulfur as- 
similation in leaves of C4 plants is anal- 
ogous to that of carbon and nitrogen as- 
similation; but it is distinct in that car- 
bon and nitrogen assimilation are initiated 
in mesophyll cells while sulfur assimila- 
tion is initiated in bundle sheath cells. 
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We have found the activity of ATP sul- 
furylase to be largely in bundle sheath 
cells of a variety of C4 plants. Within this 
cell type two isozymes exist, both of 
which are chloroplastic. It is not known 
whether the entire process of sulfur as- 
similation to the reduced level of cys- 
teine is compartmentalized in leaves of 
C4 plants. Recently, thiosulfonate reduc- 
tase sulfite reductase activity was 
shown in both mesophyll and bundle 
sheath cells of D. sanguinalis, with the 
bundle sheath extracts containing two to 
three times more activity than did meso- 
phyll cell extracts (7). While the con- 
sequences of cellular compartmentation 
during sulfur assimilation have yet to be 
examined fully, it is clear that sulfur 
activation has been modified in the leaves 
of C4 plants, with the initial step of 
sulfate activation occurring primarily in 
one chloroplast type of the leaf. The 
cellular compartmentation of sulfur as- 
similation in leaves of C4 plants is anal- 
ogous to that of carbon and nitrogen as- 
similation; but it is distinct in that car- 
bon and nitrogen assimilation are initiated 
in mesophyll cells while sulfur assimila- 
tion is initiated in bundle sheath cells. 
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cellular uptake. 

Lung, sinonasal, and laryngeal carci- 
nomas in nickel refinery workers have 
been attributed to the inhalation of nickel 
compounds (1). Rats receiving a single 
intramuscular injection of crystalline 
Ni3S2 or crystalline Ni3Se2 have devel- 
oped a 65 to 100 percent incidence of sar- 
comas (2-4). However, when amorphous 
NiS was administered under similar con- 
ditions, no cancers were observed to de- 
velop (5). The differences in carcinogen- 
ic activity between crystalline Ni3S2 and 
amorphous NiS have been documented 
in other experimental animals, including 
mice and Syrian hamsters, with various 
administration routes (that is, intrarenal 
and intratesticular injection) (2-4, 6). 
The inhalation of crystalline Ni3S2 has al- 
so been shown to induce lung cancer in 
experimental animals (7). 

The striking difference in carcinogenic 
activity between amorphous NiS and 
crystalline Ni3S2 was also observed in a 
tissue culture cell transformation assay 
(8-10); Ni3S2 induced a concentration- 
dependent incidence of morphological 
transformation in cultured Syrian ham- 
ster embryo cells, whereas amorphous 
NiS produced little or no change (10-12). 
Colonies transformed by Ni3S2 were 
cloned and derived into immortal cell 
lines, which are capable of forming 
three-dimensional colonies in soft agar 
and of producing tumors when in- 
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noculated into nude athymic mice (8). 
Since both Ni3S2 and NiS particles have 
similar water solubility properties and do 
not readily dissolve in tissue culture 
media, we were able to study their cel- 
lular uptake with light and electron mi- 
croscopy. Both compounds were ground 
separately and passed through a 5-gm 
screen. 

Both compounds appeared to be of 
similar particle size under the light and 
electron microscopes (<5 ,um). When 
these compounds were added to cultured 
cells grown on plastic microscopic slides 
(Leighton tubes), the cultures actively 
phagocytized the Ni3S2 particles but did 
not readily phagocytize the NiS parti- 
cles. Figure 1, A and B, shows light mi- 
croscope photographs of Chinese ham- 
ster ovary (CHO) cells and Syrian ham- 
ster embryo (SHE) cells phagocytizing 
Ni3S2 particles. The phagocytized Ni3S2 
particles were almost always contained 
in vacuoles. Figure 1C shows an electron 
microscope photograph of a CHO cell 
that has engulfed Ni3S2 particles. The 
particles are contained in a vacuole, and 
these nickel-containing vacuoles are pri- 
marily associated with the cytoplasmic 
compartment (11). 

Within 30 minutes after the addition of 
Ni3S2 to the media of these cultures, 
Ni3S2 particles were seen entering the 
cells. The time course of the uptake of 
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Chinese hamster ovary cells. Cells did not take up significant quantities of similar- 
sized particles of the noncarcinogen amorphous nickel monosulfide. The carcinogen- 
ic activity of this and other metal compounds appears to be proportional to their 
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