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Chemotaxis, the ability of certain cells 
to sense and migrate along chemical gra- 
dients, can be demonstrated in many or- 
ganisms, including bacteria, protozoans, 
and slime molds, as well as in eukaryotic 
cells (1). In higher organisms, chemotax- 
is is particularly important for the normal 
functioning of the immune system be- 
cause phagocytes such as polymorpho- 
nuclear leukocytes (PMN's) and macro- 
phages appear to accumulate at inflam- 
matory sites by responding to chemo- 
tactic signals produced there (2). 

A major advance in the understanding 
of chemotaxis came about through the 
discovery that bacteria as well as PMN's 
and macrophages contain specific high- 
affinity surface receptors for chemotactic 
factors (3, 3a). In bacteria, the availabili- 
ty of chemotactically defective mutants 
has led to the definition of biochemical 
events that follow the coupling of chem- 
otactic factors to their receptors and re- 
sult in a unidirectional migratory re- 
sponse (4). The availability of a reliable 
source of eukaryotic cells with specific 
defects of chemotactic responses may 
have similar significance for the eventual 
understanding of chemotaxis in higher 
life forms. To this end, we surveyed the 
chemotactic response in vitro of PMN's 
from several mammalian species. We 
found that equine PMN's, while able to 
respond chemotactically to the 5a com- 
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tions. Hence, comparison of the sampled 
plumes to those of the earlier, more explosive 
activity in January is tenuous. 

18. R. S. Stolarski and D. M. Butler, Pure Appl. 
Geophys. 117, 486 (1979). 

19. E. W. Hildreth, personal communication. 
20. Data are from J. G. Moore and J. G. Schilling 

[Contrib. Mineral. Petrol. 41, 105 (1973)], An- 
derson (7), and Johnston (8)]. A question mark 
indicates that no values have been determined. 

21. This value has been calculated (7). Few determi- 
nations are available, and higher chlorine con- 
centrations may exist. 

22. These concentrations were determined directly 
in extrusive rocks and are minimum values for 
the preeruption magmatic chlorine content [J. C. 
Stormer, Jr., and I. S. E. Carmichael, Am. Min- 
eral. 56, 292 (1971)]. 
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ponent of complement (C5a) and zymo- 
san-activated horse plasma (5), did not 
respond to the N-formylated chem- 
otactic peptides (6), even though there 
are high-affinity receptors for these pep- 
tides on their surface. Since the equine 
PMN's did secrete lysosomal enzymes in 
response to the N-formylated peptides, 
leukocytes from this species appear to 
lack the mechanisms that specifically 
produce a chemotactic response upon 
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occupancy of the N-formylated peptide 
receptor. 

Blood containing 10 units of heparin 
per milliliter was obtained from healthy 
horses maintained at the Duke Universi- 
ty Medical Center farm. The PMN's 
were isolated by sedimentation of the 
blood in dextran T-500 (Pharmacia) fol- 
lowed by Ficoll-Hypaque density centri- 
fugation (7). The resultant cells routinely 
contain > 95 percent PMN's. Chemo- 
taxis was quantified in modified Boyden 
chambers with 5-pm nitrocellulose filters 
(8), was scored by determining the aver- 
age number of PMN's that migrated 
through the filter, and is expressed as the 
percentage of the maximal response (8). 
Partially purified horse C5a was isolated 
from zymosan-activated horse plasma by 
methods used for the isolation of human 
C5a (5, 9). N-Formylated methionyl pep- 
tides used were: N-formylmethionylleu- 
cylphenylalanine (fMet-Leu-Phe), fMet- 
Met-Met-Met, fNle-Leu-Phe (Nle, nor- 
leucine) (Peninsula Laboratories, Palo 
Alto, California), and fMet-Leu (An- 
drulis Research Corp., Bethesda, Mary- 
land). Receptor binding studies were 
performed with fMet-Leu-[3H]Phe (spe- 
cific activity, 56.9 Ci/mole; New Eng- 
land Nuclear). A glass fiber vacuum fil- 
tration method was used with PMN's at 
a concentration of 5 x 107 per milliliter 
of phosphate-buffered saline (PBS) (3a, 
10). 

To test whether equine PMN's con- 
tained specific receptors for fMet-Leu- 
Phe, we incubated isolated PMN's with I 
to 6 nM fMet-Leu-[3H]Phe in the pres- 
ence or absence of 10 pM unlabeled 
fMet-Leu-Phe. The reaction mixtures 
were rapidly vacuum filtered onto glass 
fiber disks and washed, and specific 
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Fig. 1. (A) Binding of fMet-Leu-[3H]Phe to 
equine PMN's as a function of fMet-Leu- 
[3 H]Phe concentration. Five million equine 
PMN's were incubated with the indicated 
concentration of fMet-Leu-[3H]Phe in the 
presence and absence of 10 ,uM unlabeled 
fMet-Leu-Phe for 25 minutes at 25?C. Reac- 
tions were terminated by dilution with ice- 

2 I I I J j cold incubation buffer followed by immediate 
filtration onto glass fiber disks. Specific bind- 

t-Leu-PH]Phe (nM) ing (11) was calculated after quantification of 
radioactivity by liquid scintillation counting. 

fMet-Leu-Phe Each value represents the mean of duplicate 
determinations. (B) Time course of fMet-Leu- 

* [3H]Phe binding to PMN. The fMet-Leu- 
[3H]Phe (5 nM) was incubated with equine 
PMN's for the indicated time intervals at 
25?C, and specific binding (11) was assayed 
(@). To some incubation mixtures (0) a large 
excess of unlabeled fMet-Leu-Phe (10 ,uM) 
was added after 15 minutes of incubation, and 
fMet-Leu-[3H]Phe binding was assayed at 

i i I subsequent time intervals as indicated. Each 
20 30 40 value represents the mean of determinations 

Time (minutes) from two separate incubation mixtures. 
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N-Formylmethionyl Peptide Receptors on Equine 

Leukocytes Initiate Secretion but Not Chemotaxis 

Abstract. The chemotaxis of leukocytes appears to be initiated by the binding of 
chemotactic factors to the surface of these cells. N-Formylated peptides induce 
chemotaxis and lysosomal enzyme secretion of leukocytes; because these peptides 
are available in a purified radiolabeledform, they have been useful in the character- 
ization of receptors for chemotactic factors. Equine polymorphonuclear leukocytes 
secrete lysosomal enzymes but do not exhibit chemotaxis in response to the N- 
formylated peptides, even though they have a high-affinity cell surface receptor for 
these agents. The specificity of the equine receptor resembles the specificity of the 
receptor on chemotactically responsive leukocytes from other species. Equine poly- 
morphonuclear leukocytes may thus be an excellent modelfor the study of the events 
that lead to a biological response following receptor occupancy. 
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binding was determined (11). The PMN's 
had a high-affinity receptor for fMet- 
Leu-Phe (Fig. IA). Scatchard analysis of 
the data in Fig. IA and two additional 
experiments demonstrated that the affin- 
ity of fMet-Leu-[3H]Phe for the binding 
site on equine PMN's was 0.52 + 0.15 
nM and that the PMN's contained 
630 + 184 receptors per cell. The kinet- 
ics of fMet-Leu-[3H]Phe binding was 
rapid at 25?C with half-time (t112) for 
equilibration of 2.5 to 3.0 minutes (Fig. 
lB). The binding of fMet-Leu-[3H]Phe 
was reversible; a large excess of unla- 
beled fMet-Leu-Phe (10 pM) added to an 
equilibrated mixture of fMet-Leu- 
[3H]Phe and PMN's displaced approxi- 
mately 50 percent of the bound labeled 

peptide within 25 minutes (Fig. IB). The 
specificity of the binding site for fMet- 
Leu-[3H]Phe on equine PMN's was ex- 
amined by determining the ability of a se- 
ries of N-formylated peptides to compete 
for the site with the labeled ligand. Cells 
were incubated with 5 nM fMet-Leu- 
[3H]Phe in the presence of buffer alone 
or buffer containing various concentra- 
tions of unlabeled N-formylated peptides 
(Fig. 2C). The peptides inhibited the 
binding of fMet-Leu-[3H]Phe with order 
of potency fMet-Leu-Phe > fNle-Leu- 
Phe > fMet-Met-Met-Met > fMet-Leu, 
an indication that the equine binding 
site has the same specificity as the N- 
formylated peptide receptor described 
for human and rabbit PMN's (3, 3a). 

Fig. 2. Comparison of 
the biological activities A 0 fMet-Leu-Phe 
of a series of N-formyl- 100 - * fNIe-Leu-Phe 
ated peptides with their A fMet-Met-Met- Met 
ability to compete for . 0 fMet-Leu 
fMet-Leu-[3H]Phe bind- - 805a 
ing. (A) Chemotactic E 
response of equine x o 60 - 
PMN's to C5a and the 
N-formylated peptides 40 
as measured in modified 0 

Boyden chambers. Per- o 
cent of maximal chemo- o 20 -/ 
tactic activity was cal- 
culated as SIM x 100, 
where M is the maximal 
chemotactic response in B 
the presence of 1.25 x 10 - 
10-8M C5a (247 PMN's 
per high-power field, x _ 80 / 
780) and S is the re-/ / 
sponse in the presence 
of submaximal concen- 0 60 / 
trations of C5a or the E 
various N-formylated /N / 
peptides. Each point / 
represents the mean of 
triplicate determina- 20 

- 

tions. (B) Induction of 
lysosomal enzyme re- l l I 
lease in equine PMN's 
by N-formylated pep- C 
tides and C5a. PMN's 100 - 
treated with cyto- / * 

chalasin B (10 pM) 80 / 
were incubated with 
various concentrations / 
of the indicated pep- - .E 60 - 
tides or C5a for 15 min- 0 
utes at 37?C, after o 40 / / / 
which lysozyme activi- // / / 
ty was measured in the e / 
cell supernatant. Per- -?'~' 2/ 
cent of maximal lyso- / 
zyme release was com- A 
puted from the amount - -10 -9 8 7 -6 5 4 
of lysozyme activity re- 
leased in the presence log[peptide] (M) 
of 10-6M, fMet-Leu-Phe 
as maximum (8 tg/ml equivalent lysozyme units). Each value represents the mean of duplicate 
incubation conditions. (C) Ability of N-formylated peptides to compete for fMet-Leu-[3H]Phe 
binding on equine PMN's. Cells were incubated with 5 nM fMet-Leu-[3H]Phe in the presence 
or absence of various concentrations of the indicated peptides for 25 minutes at 25?C, after 
which specific binding was determined (11). Results are expressed as percent inhibition of 
fMet-Leu-[3H]Phe binding. Each point reflects the mean of duplicate determinations. 

494 

To test whether receptor-ligand bind- 
ing induced a chemotactic response, we 
exposed equine PMN's to a variety of N- 
formylated peptides known to be chem- 
otactic for other types of leukocytes (6, 
10). Equine PMN's did not respond 
chemotactically to any N-formylated 
peptide tested over a wide dose range 
(Fig. 2A), even though the same peptides 
elicited chemotactic responses in human 
PMN's and monocytes. That equine 
cells were indeed able to migrate chem- 
otactically was demonstrated by their re- 
sponse to horse C5a (Fig. 2A). Horse 
plasma treated with the complement ac- 
tivator zymosan was also a potent chem- 
oattractant for equine PMN's (data not 
shown). Cellular orientation toward the 
chemotactic factors was measured (12); 
equine PMN's oriented toward C5a and 
activated horse plasma, but not toward 
fMet-Leu-Phe. 

We next determined that the N-for- 
mylated peptides could produce the se- 
cretion of lysosomal enzymes from 
equine PMN's (13). Cells were incubated 
with the peptides plus cytochalasin B, 
and the amount of lysozyme released 
was measured (14) (Fig. 2B). The N-for- 
mylated peptides induced a dose-depen- 
dent secretion of lysozyme from equine 
PMN's with the same order of potency 
observed for inhibition of fMet-Leu- 
[3H]Phe binding. A correlation coef- 
ficient of .999 was obtained when the ef- 
fective concentrations of each peptide 
for producing half-maximal lysozyme re- 
lease and half-maximal inhibition of 
binding were compared. Release of ,3- 
glucuronidase (13) was also observed in 
the presence of the peptides. No release of 
the cytoplasmic enzyme marker lactate 
dehydrogenase was observed in the pres- 
ence of peptides and cytochalasin B. The 
doses of these peptides and the amount 
of C5a necessary to release lysosomal 
enzymes from equine PMN's were simi- 
lar to those reported for release of lyso- 
somal enzymes from human and rabbit 
PMN's (6, 12). 

These data demonstrate that equine 
PMN's have a high-affinity receptor for 
N-formylated oligopeptides and that the 
specificity of this receptor for the pep- 
tides is similar to that reported for hu- 
man and rabbit PMN's (3, 3a). In marked 
contrast to the human and rabbit cells, 
however, equine PMN's do not orient or 
migrate to the N-formylated peptides, al- 
though the cells are capable of respond- 
ing to other chemotactic agents. Despite 
the inability of the N-formylated pep- 
tides to induce chemotaxis in equine 
PMN's, they do initiate another recep- 
tor-coupled event, the secretion of lyso- 
somal enzymes. Equine PMN's will thus 
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provide an exceptionally important mod- 
el for the study of the biology and bio- 
chemistry of chemotactic peptide recep- 
tor-mediated functions in mammalian 
cells. Although the occupancy of N-for- 
mylated peptide receptors induces one 
receptor-coupled process, it fails to in- 
duce another that is thought to be initi- 
ated by the same mechanism. The reason 
for this discrepancy is unknown. It is 
possible that the coupling processes that 
link this receptor with the effector mech- 
anisms for the two different biological 
functions are discrete, with the trans- 
ducer for secretion intact while the one 
for chemotaxis is nonfunctional. Alter- 
natively, the number of receptors avail- 
able may be insufficient for chemotaxis, 
but sufficient for secretion. In studies of 
chemotactic factor receptors on chem- 
otactically responsive cells, the esti- 
mates have ranged from 2000 to 250,000 
receptors per cell. Equine PMN's con- 
tain < 1000 receptors per cell. Although 
these cells clearly have enough N-for- 
mylated peptide receptors to initiate se- 
cretion, they may not have a sufficient 
number to sense a gradient across their 
surfaces. Chemotaxis, unlike secretion, 
may require an asymmetric distribution 
of chemoattractant binding sites on the 
cell surface for directional movement. It 
is also possible that secretion and 
chemotaxis induced by the N-formylated 
peptides are initiated by similar but inde- 
pendent receptors. 

In any case, the transduction signals 
resulting from the binding of the N-for- 
mylated oligopeptides to their receptors 
differ for chemotaxis and secretion in 
equine PMN's-the former signal being 
ineffective while the latter signal is oper- 
ative. It should now be possible, by com- 
paring equine and human PMN's, to sep- 
arate the biochemical events following 
N-formylated oligopeptide receptor oc- 
cupancy that result in secretion alone 
and those that result in both secretion 
and chemotaxis. 
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Ion Pairing Techniques: Compatibility with On-Line 

Liquid Chromatography-Mass Spectrometry 

Abstract. The mass spectrometric properties of a series of model ion pairs were 
examined. In the cases studied it was possible to vaporize the ion pair consituents 
and to produce spectra corresponding to those of the unpaired materials. These find- 
ings offer a convenient means for derivatizing certain ionic compounds and demon- 
strate the feasibility of analyzing ionic species by on-line liquid chromatography- 
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The direct analysis of ionic species by 
conventional mass spectrometric (MS) 
techniques [that is, electron impact ion- 
ization (El) or chemical ionization (CI)] 
is difficult if not impossible, and chem- 
ical derivatization is usually required for 
these types of compounds. This require- 
ment complicates the analysis of large 
and important classes of compounds, 
particularly those of biological and phar- 
maceutical origin that are ionic in char- 
acter. 

With high-performance liquid chro- 
matography (HPLC), ionic compounds 
are being successfully analyzed by 
ion pairing techniques (1), but there is 
limited information on the MS character- 
istics of the resultant neutral derivatives. 
The direct combination of reversed 
phase HPLC and MS has recently been 
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accomplished (2), and we report here our 
findings regarding the MS properties of 
model ion pairs that demonstrate both 
the compatibility of on-line LC-MS with 
ion pairing techniques and the potential 
for using ion pair derivatives for the di- 
rect MS analysis of ionic compounds. 

As a model system for this study, we 
chose ion pairs formed from n-alkyl sul- 
fates and sulfonates (counterions) and 
primary amines (solutes). This system is 
relatively general and is routinely ap- 
plied to the HPLC analysis of biological 
and pharmaceutical materials. To be 
ideally compatible with MS analysis, 
both constituents of the ion pair should 
be volatilized under normal MS oper- 
ating conditions and should provide 
spectra indicative of or consistent with 
the structure of the unpaired materials. 
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