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aware that the one-interval pain rating scale pro- 
cedure with six response categories would mea- 
sure the pain report criterion directly. However, 
we were concerned that such judgments would 
prove too complex for poorly educated subjects. 
Experience suggests that we probably were mis- 
taken; we recommend that the multicriteria pain 
rating scale (2) be tried for a more direct assess- 
ment of the pain criterion locus. 
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Associative Behavioral Modification in Hermissenda: 

Cellular Correlates 

Abstract. Three days of training consisting of trials of light paired with rotation 
produces a long-term modification of photopositive behavior in Hermissenda crassi- 
cornis. The behavioral modification depends on the temporal association of light and 
rotation. For animals that received light paired with rotation, significant increases in 
the spontaneous activity of type B photoreceptors were correlated with changes in 
photopositive behavior after training. A persistent tonic depolarization of type B 
photoreceptors can explain the cellular changes correlated with the long-term behav- 
ioral modification produced by the temporal association of light and rotation. 
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Cellular analysis of long-term behav- 
ioral modifications in invertebrates may 
elucidate neural mechanisms of learning 
(1-3). Conditioning procedures have pro- 
duced long-term behavioral modifica- 
tions in gastropod mollusks in which 
some progress has been made toward de- 
fining the neural circuitry and the neural 
activities involved in behavior (2). The 
eyes, optic ganglia, and statocysts of 
Hermissenda consist of relatively few 
cells whose synaptic relations and cellu- 
lar organization have been examined in 
detail (4). Stimulation of the animals' 
eyes and statocysts with light during ro- 
tation resulted in a short-term nonas- 
sociative change in photopositive behav- 
ior (5). Recently, Crow and Alkon (3) 
reported long-term modification of a pho- 
topositive response-approaching and 
moving into an illuminated area (3, 5)- 
in the nudibranch mollusk Hermissenda 
crassicornis. Response latencies of in- 
dividual Hermissenda to enter an il- 
luminated area were significantly longer 
after training than before in animals re- 
ceiving training with diffuse light paired 
with rotation on a modified turntable. 
Trained animals were significantly dif- 
ferent from groups that received random 
control procedures (3). The behavioral 
modification persisted for several days 
after training, depended on the temporal 
association of the training stimuli, in- 
creased with practice, reversed to levels 
before training with repeated testing, and 
may have exhibited some savings (3). 
The response was specific to the light 
test and not a change in general activity: 
When the trained animals were tested in 
both light and dark, only latencies to en- 
ter the illuminated area increased (6). 
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The increase can be accounted for by a 
significant increase in the latency to initi- 
ate movement in response to light (6). 
Changes in hair cell responses to light 
stimuli have been observed after short- 
term training with light paired with rota- 
tion, and stimulation of the isolated ner- 
vous system with trials of light paired 
with rotation resulted in a change in type 
A photoreceptor responses to light (7). 
We have now found that nervous system 
modification of the photopositive re- 
sponse in Hermissenda is correlated 
with cellular changes in the type B pho- 
toreceptors. 

Animal maintenance and automated 
training (8) and testing procedures were 
used (3). The animals were placed on a 
cycle of 61/2 hours of light in 24 hours for 
3 days before the start of behavioral 
training. Training, behavioral testing, 
and intracellular recording from the iso- 
lated nervous systems took place during 
the animals' light cycle. For three con- 
secutive days trained animals (N = 25) 
received 50 trials per day of light (30 sec- 
onds) paired with rotation (30 seconds) 
(average intertrial interval, 2.0 minutes). 
Control groups (total N = 25) received 
identical trials of random light and ran- 
dom rotation or random rotation alone. 
Immediately after the last training trial 
on the third training day, response la- 
tency to enter an illuminated area was 
measured. The circumesophageal ner- 
vous systems were then removed and 
pinned to the Sylgard (Dow Corning) 
bottom of a recording chamber filled 
with seawater maintained at 15?C during 
the recording session. The nervous sys- 
tem was incubated in a solution of diges- 
tive enzyme prior to microelectrode pen- 
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etration of the photoreceptors (protease, 
type VII, Sigma). Photoreceptors were 
impaled with single microelectrodes 
filled with 4M potassium acetate for con- 
ventional intracellular recording and cur- 
rent injection. A bridge circuit was used 
to pass current through the recording 
electrode for input resistance measure- 
ments. Current was monitored by a vir- 
tual ground current-to-voltage converter 
or by the voltage drop across a resistor in 
the ground path. Measurements of spon- 
taneous activity of the photoreceptor, re- 
sponses to brief light flashes, and input 
resistance were taken after 15 minutes of 
dark adaptation. Frequency of B activity 
was determined for all groups by count- 
ing the number of spikes in a continuous 
20-second period immediately after dark 
adaptation. Illumination was provided 
by a qtiartz-iodide incandescent lamp. 
The light was attenuated by neutral den- 
sity filters. The measurements were 
taken from one type B cell in an eye, and 
data from only one eye per preparation 
were used in the statistical analysis. We 
found the spontaneous activity in the 
dark of type B photoreceptors from the 
group receiving paired light and rotation 
was significantly higher than that of the 
two random control groups (Fig. 1). A 
Cochran test for homogeneity of vari- 
ance (9) showed that the sample vari- 
ances were not significantly different. 
The spontaneous activity of the B pho- 
toreceptors between the groups differed 
significantly [F(2,47) = 7.32; P < .01]. 
The a posteriori tests showed that the 
spontaneous activity of the B photore- 
ceptors from the paired light and rotation 
group was significantly higher than that 
of the two random control groups (New- 
man-Keuls test, P < .01). The two ran- 
dom control groups were not significant- 
ly different from each other. A replica- 
tion of the experiment was conducted 
with a blind procedure. The spontaneous 
activity of B photoreceptors in trained 
animals (N = 6) was compared with ran- 
dom controls (N = 5) under identical 
maintenance conditions. Trained ani- 
mals [mean (X) = 2.84 spikes per sec- 
ond] were significantly different from 
random controls (X = 2.09 spikes per 
second) (t = 2.47; P < .025). 

As before (3), the group that received 
light paired with rotation took signifi- 
cantly longer to enter the illuminated 
area after training than the random light 
and rotation control group (z = 1.79, 
P < .03) and the random rotation control 
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latencies to enter the light were not sig- 
nificantly different for the two random 
control groups. The relationship be- 
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group (z = 2.12, P < .01) (Fig. IB). The 
latencies to enter the light were not sig- 
nificantly different for the two random 
control groups. The relationship be- 
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tween the activity of B photoreceptors 
and the behavioral modification was in- 
dicated by a significant positive correla- 
tion (Spearman p = .63; P < .01) be- 
tween B spike frequency and the behav- 
ioral response latencies to enter light for 
animals in the paired light and rotation 
group. In order to control for possible ef- 
fects due to variation in photoreceptor 
activity during the light phase of the 
cycle, some animals were selected at 
random from the group receiving light 
paired with rotation (N = 7) and random 
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Fig. 1. Effect of training procedures on 
spontaneous activity of dark-adapted typ 
photoreceptors and photopositive behav 
(A) Examples of intracellular recordings fi 
dark-adapted B photoreceptors. (B) Hi 
grams comparing behavioral changes in 
sponse to light immediately after the last tr 
ing trial with the cellular correlate (spike 
quency of B photoreceptors) from experim 
tal (N= 25) and random control anin 
(total N = 25; random rotation, N = 7; 
dom light and rotation, N = 18). Behavi 
data are expressed as medians + interqua! 
ranges. Intracellular recordings were taken 
ter behavioral response. Spike frequency c 
are shown as mean spikes per second + sl 
dard deviations. Cutoff scores of 180 mint 
were used for all groups during behavi 
testing. 
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control group (N = 8) at the same time 
in the light cycle immediately after train- 
ing but before testing their responses to 
light. Recordings from type B photore- 
ceptors were then taken at the same time 
of the light cycle for both experimental 
and control groups. We again found a 
difference in the spontaneous spike fre- 
quency of dark-adapted B photorecep- 
tors (t = 3.28; P < .01) between the 
groups. Therefore, the difference in 
spike frequency between trained and 
random controls cannot be explained by 
variations in activity of the photorecep- 
tors during the light phase of the light- 
dark cycle. 

The increase in spike frequency of 
type B photoreceptors after training is 
not the result of disinhibition or an in- 
crease in the frequency of excitatory 
postsynaptic potentials (EPSP's) in the B 
photoreceptors. To show this, we hyper- 
polarized the photoreceptors with steady 
negative current to block spike activity. 
This revealed a series of inhibitory post- 
synaptic potentials (IPSP's) in the pho- 
toreceptors from both the paired group 
and the control group. The IPSP's are 
typical of the synaptic interactions be- 
tween photoreceptors and are the result 
of direct inhibitory input from other pho- 
toreceptors (4). The IPSP frequency was 
typically greater for cells from paired an- 
imals than from random controls. Thus, 
a decrease in inhibitory synaptic input 
cannot account for the increase in spike 
frequency. Hyperpolarizing the photore- 
ceptors to the approximate reversal po- 
tential of the IPSP's did not reveal any 
differences between the paired group and 
control groups in the frequency of 
EPSP's. The B photoreceptors from the 
paired light and rotation group required a 
significantly greater hyperpolarization, 
from the resting potential, to block spike 

o activity (X = -13.9 mV) than did those 
from random controls (X= -7.6 mV) 
(t = 4.66, P < .005). These results could 
be explained by a tonic depolarization of 

the the type B photoreceptors as a result of 
e B the training procedure. Tonic changes in 
ior. the membrane potential of locust mo- 
rom toneurons following a conditioning pro- 
sto cedure may explain the modification of 

ain- motoneuron pacemaker activity (10). To 
fre- further investigate the depolarization of 
ien- type B photoreceptors, we compared the 
nals rals input resistance of the B photoreceptors ran- 
oral from the paired group (X = 88.5 meg- 
rtile ohms) and the random control group 
laf- (X = 62.7 megohms) (Mann-Whitney U 
lata test, U = 4, P = .026). tan- 
taes We then examined the cellular 
oral changes after training in a preparation 

from which impulse activity and synaptic 

input were eliminated by cutting the op- 
tic nerve before its entry into the ce- 
rebropleural ganglion (11) (Fig. 2A). In 
the cut nerve preparations, B photore- 
ceptors from animals in the experimental 
group (N = 9) had ahigher input resist- 
ance than cells from the random control 
group (N = 6) (U = 10, P = .025) (Fig. 
2, B and C). The membrane potential of 
isolated photoreceptors from cut nerve 
preparations from trained animals was 
more depolarized (X = -56.5 mV) than 
the random control group (X = -62.25) 
(U = 5, P = .024). The electrophys- 
iological results from the isolated pho- 
toreceptors of cut nerve preparations 
are consistent with the observations 
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Fig. 2. Cellular changes in cut nerve prepara- 
tions from experimental and random control 
animals. (A) Receptor potentials of dark- 
adapted type B photoreceptor from an experi- 
mental animal (light paired with rotation). Re- 
sponses evoked by brief light flashes of in- 
creasing intensity (4), -log 3.0; (3), -log 2.0; 
(2), -log 1.0; (1), -log 0.5. Dashed line in- 
dicates resting membrane potential and lower 
trace indicates duration of light flash. The ab- 
sence of spikes and synaptic potentials in- 
dicate that the photoreceptor soma was suc- 
cessfully isolated from the area of spike initia- 
tion and synaptic input. (B) Representative 
linear current-voltage relationship of dark- 
adapated isolated (cut nerve) type B photore- 
ceptors from experimental (paired) and ran- 
dom control groups. (C) Examples of changes 
in membrane potential of dark-adapted isolat- 
ed B photoreceptors from experimental and 
random control animals. Electrotonic poten- 
tials evoked by hyperpolarizing square cur- 
rent pulses (bottom traces) through a bal- 
anced bridge. Resistance measurements taken 
with the single electrode-bridge circuit are 
consistent with data from experiments in 
which the photoreceptors were impaled si- 
multaneously with two microelectrodes for 
current injection and voltage recording (15). 
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from intact B photoreceptors after train- 
ing. The increase in input resistance and 
the persistent tonic depolarization of the 
B photoreceptor could be explained by a 
decreased potassium conductance. 

Specific ionic conductances invoked 
during a light stimulus (step) have been 
recently examined (12-15). The initial 
depolarizing transient arises mainly from 
an inward Na+ current. The hyper- 
polarizing phase of the light response 
arises from an outward K+ current. A 
sustained depolarizing light response 
during stimulation arises from an inward 
voltage-dependent Ca2+ current (15). Af- 
ter a light step, the slowly decreasing de- 
polarization, long-lasting depolarization 
(LLD), arises from a slowly decreasing 
inward Ca2+ current and probably a de- 
crease of resting K+ current (15). 

The amplitudes of the hyperpolarizing 
phase (measured with respect to the 
peak amplitude of the initial depolarizing 
transient (U = 5, P = .024) and the de- 
polarizing tail (LLD) of the light re- 
sponse (U = 7, P = .053) were signifi- 
cantly increased in cut nerve prepara- 
tions from trained animals as compared 
with random controls. These differ- 
ences in generator potential waveforms 
are consistent with the other cellular 
changes, indicating that training results 
in a persistent depolarization of type 
B photoreceptors. Namely, for a more 
depolarized cell the amplitude of the 
initial depolarizing transient would de- 
crease as the cell membrane potential 
is moved closer to the sodium equilibri- 
um potential (ENa), and the hyper- 
polarizing phase would increase as the 
membrane potential is further from the 
potassium equilibrium potential (EK). 
The LLD after the light step would in- 
crease in the more depolarized cells of 
trained animals because of the voltage- 
dependence of the light-induced Ca2+ 
current. 

All of the results can be explained by a 
persistent decrease of a voltage-depen- 
dent K+ conductance across the type B 
photoreceptor membranes. Such a de- 
crease of K+ conductance in darkness 
would produce an increase in input resist- 
ance. It would also cause the observed 
changes in the light-induced voltage re- 
sponses. These findings, in turn, may be a 
consequence of long-term changes of in- 
tracellular Ca2+ to which dark K+ con- 
ductances are sensitive (15). 
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feeding times of individual insects. 
Rhoades (5) lists plant response times 
that range from 12 hours to several 
years. 

We now present experimental evi- 
dence for rapid, induced resistance and 
a behavioral counterresponse by Epi- 
lachna tredecimnotata (Coleoptera: 
Coccinelidae) when feeding on leaves of 
squash, Cucurbita moschata (Cucurbi- 
taceae), in southeastern Mexico (6). Epi- 
lachna tredecimnotata and perhaps oth- 
er cucurbit-feeding species in this genus 
(for example, E. borealis) engage in 
characteristic solitary feeding. Enlarged 
apical mandibular teeth are used to cut a 
circular trench in a squash leaf. The leaf 
tissue is almost completely cut through; 
only a few veins and bits of lower epider- 
mal tissue hold the encircled leaf section 
in place. The beetle then feeds on the en- 
circled material. Trenching behavior 
takes approximately 10 minutes while 
complete feeding on the leaf disk takes 
between 1 and 2 hours. After a morning 
feeding period the beetle crawls away 
from the damaged leaf and does not feed 
until the following morning. We propose 
that this trenching behavior is an adapt- 
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Chemical Feeding Deterrent Mobilized in Response to Insect 

Herbivory and Counteradaptation by Epilachna tredecimnotata 

Abstract. Experimentally damaged leaves of Cucurbita moschata mobilize sub- 
stances to the damaged region within 40 minutes. These substances stimulate feed- 
ing by Acalymma vittata (Coleoptera: Chrysomelidae) and inhibit feeding by Epi- 
lacha tredecimnotata (Coleoptera: Coccinelidae). Under natural conditions, Epi- 
lachna cuts a circular trench in the leaf beforefeeding on the encircled leaf material, 
thus preventing mobilization of the deterrent substances to the feeding area. 
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