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Influence of a Phase Transition of Ice on the 

Heat and Mass Balance of Comets 

Abstract. Differences in gas production rates of comets may be explained in part 
by the phase transition of ice in the comet nuclei. 

Recently, Smoluchowski (1) pointed 
out that the presence of amorphous ice 
may have an important influence on the 
heat and mass balance of particles of Sa- 
turnian rings. 

According to Whipple (2), comet nu- 
clei contain a large amount of water ice. 
This ice seems to have been condensed 
at temperatures lower than 100 K and 
must be amorphous [infrared data from 
interstellar clouds indeed suggest the 
presence of amorphous ice (3)]. If comet 
nuclei contain amorphous ice, the effect 
on heat and mass balance may be even 
more dramatic for comets than for the 
ice particles in Saturnian rings. 

The heat conduction coefficient (K) of 
hexagonal ice is well known for absolute 
temperatures (T) between 0.5 and 273 K 
(4-6). For temperatures higher than - 25 
K it can be expressed by the phenome- 
nological law 

5.67 
K 

T 

use for c the values measured for hexag- 
onal ice by Giauque and Stout (9) [the 
difference between the specific heat of 
hexagonal and amorphous ice is less than 
30 percent in the temperature range con- 
sidered here (10)], we find that for tem- 
peratures higher than 20 K the heat con- 
duction plot for amorphous ice obtained 
in this way (dashed line in Fig. 1) is situ- 

(1) 

The solid line in Fig. 1 corresponds to 
this equation. Unfortunately, no mea- 
sured data on the heat conduction coeffi- 
cient of amorphous ice are available. Ac- 
cording to Pohl (7), all heat conduction 
coefficients of amorphous dielectric sol- 
ids measured up to now are confined to 
the shaded zone of Fig. 1. We can esti- 
mate the heat conduction coefficient of 
amorphous ice by using the classical for- 
mula (8) 

1 
K = -cvXp 

4 (2) 

where c is the heat capacity per unit of 
mass, v is the velocity of sound, X is 
the mean free path of the phonon, and p is 
density. If we consider that the mean 
free path of the phonon is constant and 
about 5 x 10-8 cm [the order of magni- 
tude of the elementary cell (8)], and take 
2.5 x 105 cm/sec as the mean value for 
the velocity of sound in ice, and then 
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Fig. 1. Calculated heat conduction coefficient 
for amorphous ice (dashed line) compared to 
the heat conduction coefficient for hexagonal 
ice (solid line). 

ated in the shaded zone. We conclude for 
this reason that our estimation is not too 
bad. 

The heat conduction coefficient of 
hexagonal ice is at least ten times higher 
than that of amorphous ice. The value 
of K increases with temperature for 
amorphous ice. The heat conduction co- 
efficient of cubic ice is not known, but as 
cubic ice is a crystalline form we expect 
that it is not very different from hexago- 
nal ice. Amorphous ice is metastable 
with respect to crystalline ice. Transfor- 
mation to cubic ice occurs within a few 
seconds at about 135 K, but for temper- 
atures lower than 30 K amorphous ice is 
stable for more than 1027 years (3, 11). 

Let us now consider a comet entering 
the solar system for the first time. The 
external crust of the nucleus will contain 
essentially amorphous ice. The upper 
limit of the "effective" heat conduction 
coefficient of the surface layer will be 
fixed by the heat conduction curve of 
amorphous ice. But because of the im- 
perfect thermal coupling between indi- 
vidual grains, we expect very low val- 
ues. At temperatures below 100 K the 
production rate of water vapor is low be- 
cause of the low vapor pressure, and 
most of the absorbed solar radiation is ei- 
ther reradiated or used to heat the sur- 
face layer of the nucleus. Gas production 
will increase with increasing temper- 
ature. When a temperature between 130 
and 140 K is reached, part of the water 
molecules in the surface layer will crys- 
tallize irreversibly in the cubic form. 
Since the phase transition is an exo- 
thermal process, the ice will release 
some excess heat (10), and the transfor- 
mation of neighboring layers will be fa- 
vored. The upper limit of the effective 
heat conduction coefficient will now be 
fixed by the heat conduction curve of 
crystalline ice. Because the recrys- 
tallization of amorphous snow is accom- 
panied by a reduction of the specific sur- 
face area (12, 13), the coupling between 
grains may be better than it is for 
amorphous ice, and the value of the ef- 
fective heat conduction coefficient may 
be closer to that of the compact material. 
We conclude that a larger part of the in- 
coming heat will be transferred to deeper 
layers of the nucleus. A crust of crystal- 
line ice will remain on the surface when 
the comet is leaving the neighborhood of 
the sun so that the heat conduction to the 
interior will be more important on the 
postperihelion branch of the orbit than 
on the preperihelion branch. The result 
will be asymmetric gas production with 
respect to the perihelion. Observations 
of the 18-cm radio spectrum of comet 
Meier (1978f) (14) seem to show an 
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asymmetry of OH production with re- 
spect to the perihelion. 

When a periodic comet approaches the 
sun the surface of its nucleus will still 
contain cubic (and perhaps hexagonal) 
ice. This will be favorable to heat con- 
duction to deeper layers, even at large 
solar distances, and gas production will 
be decreased by this mechanism. The 
gas production rate of "old" comets is 
indeed lower than that of "young" ones 
(15). 

The mechanism proposed here will 
have as a consequence that some orbits 
may be favorable to gas production and 
others favorable to conduction of heat 
into deeper layers of the nucleus. Phase 
transition with an increase of thermal 
conduction will prevail when the temper- 
ature of the nucleus at the perihelion 
is close to the transition temperature. 
When the temperature is much higher, a 
large amount of the newly formed crys- 
talline ice crust will evaporate. We see 
that two comets of comparable age, with 
comparable mean radiation intensity re- 
ceived during their revolutions, may 
have very different gas production rates. 
For this reason it seems that, disre- 
garding the differences in age of the 
comets, the orbit of Halley may be in- 
trinsically more productive than that of 
Tempel 2, even if we take into account 
that the mean radiation intensity re- 
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Plagioclase feldspar, a common rock- 
forming mineral, consists of a solid solu- 
tion between the end-members anorthite 
(An), CaAl2Si2O8, and albite (Ab), 
NaAlSi3O8. Naturally occurring plagio- 
clase frequently exhibits an oscillatory 
compositional zoning such that the mole 
fraction of the An end-member varies in 
a periodic fashion from the core to the 
rim of the plagioclase grain. The ampli- 
tude of this compositional oscillation is 
generally between 5 and 15 mole per- 
cent, and the wavelength is between 10 
and 100 ,/m. Ten or more complete com- 
positional oscillations may be observed 
in samples exhibiting this phenomenon 
(). 
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