
3), as well as the free enkephalins, have 
such amino terminal sequences and in- 
teract with the opiate receptor. It re- 
mains to be seen, therefore, whether 
peptides other than the free [Met]- and 
[Leu]enkephalins are of physiologic im- 
portance among all those found in the ad- 
renal gland. On a molar basis the free en- 
kephalins represent no more than 9 per- 
cent of the total compounds containing 
enkephalin sequences (Table 1). On a 
weight basis, the enkephalins represent 
less than 0.4 percent of the total. Con- 
ceivably, some of the larger peptides and 
proteins may provide additional specific- 
ity for cell recognition, confer additional 
stability in vivo, or even possess dif- 
ferent types of biological activity. 

The finding of the sequences of three 
different hormones in pro-opiocortin was 
rather surprising at the time (14). It is of 
interest that the putative enkephalin pre- 
cursors also contain more than one ac- 
tive peptide sequence, [Met]enkephalin 
and [Leu]enkephalin. What is most un- 
usual about the larger peptides and pro- 
teins is that they contain multiple copies 
of a single sequence, [Met]enkephalin. 
The full significance of this multiplicity 
of the [Met]enkephalin sequence in the 
large peptides is not clear. It does, how- 
ever, explain the ratio of [Met]enkepha- 
lin to [Leu]enkephalin of about 5 to 1 
up to 7 to 1 reported by others (16), and 
suggests that this ratio is already encoded 
in nuclear DNA. Another important con- 
clusion is that a common precursor to 
[Met]enkephalin and [Leu]enkephalin 
makes unlikely the proposed occurrence 
of separate neurons for the two enkepha- 
lins (17). 

A 50,000-dalton enkephalin-containing 
protein has also been found in the stria- 
tur and intestine (2), and the heptapep- 
tide, [Met]enkephalin-Arg6-Phe7, and 
other extended enkephalins found in ad- 
renal medulla are also present in striatum 
(6). Thus, the biosynthetic pathway for 
enkephalins suggested by these studies 
on the adrenal medulla may be universal 
for all enkephalin-containing tissues. 
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Calcium ions traverse the myocardial 
cell membrane in both directions during 
each cycle of contraction and relaxation 
in the heart. These Ca2+ movements ap- 
pear to play a crucial role in excitation- 
contraction coupling in cardiac muscle 
since the removal of extracellular Ca2+ 
leads to an abrupt loss of contractile ac- 
tivity (1, 2). An important mechanism for 
the transfer of Ca2+ across cell mem- 
branes in excitable tissues is Na+-Ca2+ 
exchange, a carrier-mediated transport 
process that couples the movement of 
Ca2+ in one direction to the movement of 
Na+ in the other (3-5). The precise role 
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of Na+-Ca2+ exchange in cardiac physiol- 
ogy is uncertain. Reuter and co-workers 
(3, 6) proposed that its primary function 
is removal of Ca2+ from the cell, utilizing 
the energy of the inwardly directed Na+ 
gradient for this purpose. In contrast, 
Langer et al. (7) suggested that it brings 
Ca2+ into the cell with each contraction 
in response to a depolarization-induced 
elevation in intracellular Na+. It has also 
been suggested that Na+-Ca2+ exchange 
mediates the inotropic effects of cardiac 
glycoside administration and changes in 
stimulation frequency (4, 8). 

The stoichiometry of the cardiac Na+- 
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Table 1. Uptake of TPP+ and calcium by cardiac membrane vesicles treated with valinomycin or 
carbonyl cyanide m-chlorophenylhydrazone. 

TPP+ uptaket (nmole Ca2+ uptaket 
Treatment* per mg of protein) (nmole per mg 

EGTA Ca2+ of protein) 

Control 0.58 + 0.06 1.64 ? 0.07 35.2 ? 2.4 
Valinomycin 0.37 + 0.04 0.40 ? 0.05 61.8 + 1.1 
Carbonyl cyanide m-chlorophenylhydrazone 0.42 ? 0.10 0.60 ? 0.04 51.6 + 4.4 

*Vesicles were treated with 8.3 x 10-6M valinomycin (4 nmole per milligram of protein) or 3.3 x 10-6M 
carbonyl cyanide m-chlorophenylhydrazone (2 nmole per milligram of protein) and then assayed for TPP+ and 
Ca2+ uptake as described in the legend of Fig. 1. tValues are the means + standard errors of triplicate 
determinations. For both the TPP+ and Ca2+ uptake studies, Ca2+ was present at a concentration of 50 pM. 
Uptake was measured over a 10-second interval in each case. 
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Sodium-Calcium Exchange Activity Generates a 

Current in Cardiac Membrane Vesicles 

Abstract. Sarcolemmal membrane vesicles isolated from canine ventricular tissue 
accumulate calcium through the sodium-calcium exchange system when an out- 
wardly directed sodium gradient is generated across the vesicle membrane. More- 
over, calcium uptake under these conditions is accompanied by the transient accu- 
mulation of the lipophilic cation tetraphenylphosphonium. Since the distribution of 
tetraphenylphosphonium across biological membranes reflects the magnitude and 
direction of transmembrane potential differences and the characteristics of the tran- 
sient accumulation of this cation closely resemble those of sodium-calcium exchange 
activity, it is concluded that a membrane potential, interior negative, is produced 
during calcium accumulation through the exchange system. Thus, the operation of 
the sodium-calcium exchange system generates a current in cardiac membrane vesi- 
cles, suggesting that three or more sodium ions exchange for each calcium ion. 
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Fig. 1. Uptake by cardiac membrane vesicles 
0 A - o00 of 3H-labeled TPP+ measured in the (@) pres- 
? ence or (0) absence of 50 tM CaC12, and of 

\ A-- .........^ (A) 45Ca2+ measured in the presence of 50 /M 
2. 

\ 
-' 
-45CaC12. Sarcolemmal membrane vesicles 

a - \A ," - 80 . were prepared from canine ventricular tissue 
'a * ,' ~ by a combination of differential and sucrose 
? ?-* density gradient centrifugation (23). Vesicles 
o 1.5- \ o were loaded internally with NaCl by in- 
E AE cubation for 18 hours at 0?C in 160 mM NaCl, 

- 60 1 

a,- \ 60 I 20 mM Mops-tris (pH 7.4). To assay TPP+ up- 
' *\ take, 0.5-/1 portions of the Na+-loaded vesi- 

Ic~ s f~ ^~\~ - d cles (5 to 10 mg of protein per milliliter) were 
o 1.0 - * . added to tubes containing 15 /1 of 160 mM 

a , \ - 40 a KCI, 20 mM Mops-tris (pH 7.4) and 33 /M 
A *o [3H]TPP+ (2.5 Ci/mmole; bromide salt) with 

+ j o o 
+ (1) 50 t,M CaCl2 or (0) 0.1 mM EGTA pres- 

0 O o 2 ent. Uptake was terminated by diluting the 
0 5@- 20 contents of the tube with 5 ml of ice-cold 200 

mM KCI, 5 mM Mops-tris (pH 7.4). The vesi- 
cles were immediately collected on Whatman 
GF/A glass fiber filters and washed twice with 

0 , , I i , 0 5 ml of 200 mM KCI, 5 mM Mops-tris. Dilu- 
1 3 5 tion, filtration, and washing were accom- 

Time (min) plished within 8 seconds; the half-time of 
TPP+ loss in the termination medium at 0?C 

was - 15 seconds. To measure Ca2+ uptake, 0.5-,l portions of the Na+-loaded vesicles were 
diluted into 160 mM KCI, 20 mM Mops-tris (pH 7.4) containing 50 M 45CaC12 (Amersham; 
0.8 Ci/mmole); uptake was terminated by the filtration procedure described above. In the pres- 
ence of 33 ,uM TPP+ the initial rate and extent of Ca2+ accumulation were - 80 percent of the 
values in the absence of TPP+ (data not shown). 

Ca2+ exchange system is a subject of de- 
bate (9). Electroneutral exchange of two 
Na+ per Ca2+ is indicated by the finding 
that Na+-dependent Ca2+ fluxes in guinea 
pig atria are a function of the square of 
the Na+ concentrations on either side of 
the membrane and are not affected by 
changes in the membrane potential (3, 6). 
Electrogenic exchange of at least three 
Na+ per Ca2+ is suggested by studies of 
the dependence of contractile tension on 
the external Na+ concentration and the 
membrane potential in frog atrial tissue 
(1, 10). In nervous tissues Na+-Ca2+ ex- 

change appears to be an electrogenic 
process (11). An electrogenic exchange 
system could have several advantages 
over an electroneutral process with re- 
spect to its possible physiological func- 
tions in the heart. A three-for-one ex- 
change system would remove Ca2+ from 
the cell much more effectively than a 
two-for-one process (9, 12). Moreover, 
the activity of an electrogenic process 
would respond to changes in the mem- 
brane potential, bringing Ca2+ into the 
cell on depolarization and removing it 
from the cell on repolarization (9). Final- 

08 B 40 Fig. 2. (A) Uptake of 0.8 a 40 a 3H-labeled TPP+ in 
o1.5 - the presence of vary- 

, - " ing concentrations of 
) *| I'A, Na+. The uptake was 

assayed in the (a) 
.c~E i 0 ~, \~ .E presence or (0) ab- 

\ - '\ C- sence of 100 /aM 
0 c3 0 

a 1.0-\ - A CaCI2 as described in 
h *~~\ -~3 

A the legend of Fig. 1, 
E 0 \ - 20 except that the dilu- 

^ ^^ Ca . \ \ tion media contained 
'-I -o"-^-^ ? F , admixtures of 160 
E o )9 A E mM NaCl and 160 

05- A S - ' mM KC1 to give the 
a) o0.2- \ \ '- o a) final Na+ concentra- 

r..~0.2 10 -, 

^ \XJ~~~ \'^ ~ ~ ~ t~ tions shown. The val- 
?- \'^" a ues given are the 

^~+~~ ~ \ ?c^~~-A.~ + 
means of 10-second 

0-Xa~~~ *^^ -~~a\ ^ measurements in trip- 
F- o liI 0 0 co licate. (B) Effects of 

50 150 50 150 Na+ on (A) net TPP+ 
uptake and (A) Ca2+ 

Na+ concentration (mM) uptake. The 45Ca2+ 
uptake (10 seconds) was measured in triplicate as described in the legend of Fig. 1, except that 
the concentration of 45CaC12 was 100 gtM. Net TPP+ uptake was calculated as the difference 
between the values shown in (A) for TPP+ uptake in the presence and absence of 100 ,M CaCl2. 
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ly, an electrogenic exchange system 
might also play an important role in the 
genesis of membrane currents during the 
cardiac action potential (9). 

We have shown that a subcellular 
preparation of cardiac membrane vesi- 
cles accumulates Ca2+ through the Na+- 
Ca2+ exchange system when an out- 
wardly directed Na+ gradient is gener- 
ated across the vesicle membrane (13). 
Pitts (14) confirmed these results and re- 
ported that the stoichiometry for Na+- 
Ca2+ exchange in the vesicle system is 
three Na+ per Ca2+. Pitts's conclusion 
was based on direct measurements of 
Na+ and Ca2+ fluxes. The Na+ flux mea- 
surements, however, are likely to be 
complicated by contributions from Na+- 
Na+ exchange (15). Moreover, as point- 
ed out by Pitts (14), a three-to-one 
stoichiometry does not necessarily imply 
that Na+-Ca2+ exchange is electrogenic, 
since other ions might participate in the 
exchange process. In this report, we 
demonstrate that Na+-Ca2+ exchange ac- 
tivity alters the transmembrane potential 
in sarcolemmal membrane vesicles de- 
rived from canine ventricular tissue. The 
results provide strong evidence that 
Na+-Ca2+ exchange is electrogenic in the 
vesicle system. 

We detected the formation of a mem- 
brane potential during Na+-Ca2+ ex- 
change activity by monitoring the uptake 
of a lipid-soluble cation, tetraphenyl- 
phosphonium (TPP+) (16). Lipid-soluble 
ions such as TPP+ equilibrate rapidly 
across biological membranes; thus their 
distribution across the membrane re- 
flects the magnitude and direction of a 
transmembrane potential. These ions 
have been used to measure membrane 
potentials in systems as diverse as mito- 
chondria (17), bacterial membrane vesi- 
cles (18), and intact mammalian cells 
(19). The data in Fig. 1 show the time 
course of TPP+ accumulation when sar- 
colemmal membrane vesicles loaded in- 
ternally with NaCl (Na1+) were diluted 
30-fold into a KCI medium containing ei- 
ther 50 uM CaCl2 or the Ca2+ chelating 
agent [ethylenebis(oxyethylenenitrilo)]- 
tetraacetic acid (EGTA). In the ab- 
sence of Ca2+, TPP+ was taken up to a 
constant level of approximately 0.6 
nmole per milligram of protein (20). 
When 50 utM CaCl2 was included in the 
dilution medium, the vesicles accumu- 
lated more than three times this amount 
of TPP+ within 10 seconds (21); the level 
of accumulated TPP+ subsequently de- 
clined toward the value seen without 
Ca2+ (Fig. 1). We attribute the enhanced 
uptake of TPP+ in the presence of Ca2+ 
to the development of a membrane po- 
tential, negative inside, produced by the 
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operation of the Na+-Ca2+ exchange sys- 
tem. The falloff in accumulated TPP+ 
presumably reflects the decline in the 
rate of net Ca2+ uptake under these con- 
ditions. As shown by the slope of the 
dashed line in Fig. 1, the rate of Ca2+ up- 
take was maximal during the first 10 sec- 
onds after the dilution step and gradually 
declined thereafter as Ca2+ uptake ap- 
proached a steady-state level of accumu- 
lation. The current generated by the 
Na+-Ca2+ exchange system, and hence 
the change in membrane potential, 
would be expected to decay toward zero 
as the steady state is approached. An ad- 
ditional factor leading to the falloff in 
TPP+ accumulation is the decline in the 
driving force for Na+-Ca2+ exchange as 
the Na+ gradient dissipates. 

An alternative interpretation of the 
data in Fig. 1 is that Ca2+ might activate a 
channel that allows Na+ to diffuse out of 
the vesicle, thus creating a negative dif- 
fusion potential. However, we feel that 
this is unlikely because tetrodotoxin 
(0.16 mM) and D-600 (0.1 mM), agents 
that antagonize known Na+ currents in 
cardiac tissue (22), have no effect, either 
alone or in combination, on the enhance- 
ment of TPP+ uptake by Ca2+. More- 
over, the characteristics of the Ca2+-in- 
duced stimulation of TPP+ uptake close- 
ly resemble those of Na+-Ca2+ exchange 
activity, as illustrated by the following 
observations. First, a Ca2+-dependent 
enhancement of TPP+ uptake is not ob- 
served when Li+-loaded vesicles are 
used instead of Na+-loaded vesicles. 
Moreover, K+-loaded vesicles fail to 
show a Ca2+-induced stimulation of 
TPP+ uptake when diluted 30-fold into a 
choline chloride medium. These results 
are consistent with the properties of 
Na+-Ca2+ exchange, since neither Li+ 
nor K+ will substitute for Na+ in the car- 
diac vesicle exchange system (13). Sec- 
ond, LaCl3 (1 mM), an inhibitor of Na+- 
Ca2+ exchange activity in cardiac vesi- 
cles (13), abolishes the enhancement of 
TPP+ accumulation by Ca2+. Third, 
Nai+-dependent Ca2+ uptake and the 
Ca2+-dependent enhancement of TPP+ 
accumulation show a similar dependence 
on temperature; the activation energy for 
both processes is 18 kcal/mole over the 
range 10? to 370C. Fourth, the stimula- 
tion of TPP+ uptake by Ca2+ approaches 
an upper limit as the external Ca2+ con- 
centration is increased; half-maximal en- 
hancement is observed at 8 AM Ca2+, a 
value that agrees with the Michaelis con- 
stant, Km, of 20 ,M for Nai+-dependent 
Ca2+ uptake (13, 14). Finally, Ca2+-de- 
pendent TPP+ uptake and Nai+-depen- 
dent Ca2+ uptake are inhibited by ex- 
ternal Na+ over similar concentration 
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ranges. In Fig. 2A, TPP+ accumulation 
with and without Ca2+ is plotted as a 
function of the external Na+ concentra- 
tion. In the absence of Ca2+, Na+ has 
little if any influence on TPP+ accumula- 
tion. In the presence of 100 ,tM Ca2+, in- 
creasing concentrations of Na+ progres- 
sively reduce TPP+ uptake until values 
equal to those observed in the absence of 
Ca2+ are attained. In Fig. 2B, the magni- 
tude of the Ca2+-dependent stimulation 
in TPP+ uptake is shown along with the 
rate of Ca2+ uptake at each Na+ concen- 
tration. A striking parallelism is ob- 
served between the effects of external 
Na+ on Ca2+ uptake and on the Ca2+-de- 
pendent enhancement of TPP+ accumu- 
lation. These results strongly suggest 
that the membrane potential generated in 
the presence of Ca2+ reflects the activity 
of the Na+-Ca2+ exchange system. 

An increase in the conductivity of the 
vesicle membrane should abolish the po- 
tential generated by Na+-Ca2+ exchange 
without inhibiting exchange activity it- 
self. This prediction is borne out by the 
data in Table 1, which show that Ca2+ 
fails to enhance TPP+ uptake in vesicles 
treated with either the K+-specific iono- 
phore valinomycin or the H+-specific 
ionophore carbonyl cyanide m-chloro- 
phenylhydrazone. Moreover, both ion- 
ophores markedly stimulate the initial 
rate of Ca2+ accumulation by the vesi- 
cles. The latter result suggests that Na+- 
Ca2+ exchange activity becomes self-lim- 
iting because of the buildup of charge 
across the vesicle membrane; the iono- 
phores presumably allow the charge to 
dissipate and thereby enhance the rate of 
Na+-Ca2+ exchange. 

In summary, our data demonstrate 
that Na+-Ca2+ exchange activity gener- 
ates a membrane potential in a sub- 
cellular cardiac vesicle preparation. The 
results thus provide direct evidence that 
the Na+-Ca2+ exchange system in canine 
cardiac tissue is electrogenic. 

JOHN P. REEVES 

JOHN L. SUTKO 
Departments of Physiology, 
Internal Medicine, and Pharmacology, 
University of Texas Health 
Science Center, Dallas 75235 
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The DNA and RNA polymerases and 
DNA ligase differ from most other en- 
zymes in that their specificity is depen- 
dent on the interaction of their substrates 
with a complementary template, as well 
as on the more normal interaction of sub- 
strate with enzyme. Naylor and Gilham 
were the first to use an analogous tem- 
plate principle to bring about a chemical 
condensation between oligonucleotides 
(1). They showed that poly(dA) (2) facili- 
tates the condensation of two hex- 
athymidylic acid molecules to form do- 
decathymidylic acid in aqueous solution. 
This reaction is in many ways analogous 
to that performed by a DNA ligase. 
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Organized helical structures are 
formed between polyuridylic acid and 
monomeric adenosine derivatives or be- 
tween polycytidylic acid and monomeric 
guanosine derivatives (3). These struc- 
tures, although often triple-helical, have 
much in common with double-stranded 
DNA and RNA helices. This suggested 
that it should be possible to carry out 
template-directed nonenzymatic reac- 
tions in which activated monomeric pu- 
rine derivatives condense together to 
give oligonucleotides. Polymerase reac- 
tions should be susceptible to modeling 
more easily than most enzymatic oli- 
gomerizations, since part of the normal 
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function of the enzyme is taken over by 
the template. 

We have described the template-di- 
rected condensation reactions of adeno- 
sine derivatives (4, 5) and shown that 
poly(U) directs the synthesis of oligoade- 
nylic acids-at least up to the octamer- 
from a suitable adenosine derivative, 
the 5'-phosphorimidazolide, ImpA. The 
product formed in this nonenzymatic re- 
action is predominantly 2'-5' linked (5). 
We have also shown that the Pb2+ ion 
catalyzes the formation of the longer 
oligomers, and increases the proportion 
of the natural 3'-5' linkage in the prod- 
ucts (6). 

Until recently, we were unable to 
study the corresponding reactions of the 
5'-phosphorimidazolide of guanosine 
(ImpG) in comparable detail, owing to 
the difficulty of separating oligo(G)'s in 
paper chromatographic systems. Our 
modification of an RPC-5 column (7) has 
permitted a rapid resolution of oligomers 
at least up to the 40-nucleotide polymer 
and has allowed separation of linkage 
isomers. This has enabled us to extend 
our work considerably. We now report a 
remarkable catalytic effect of Zn2+ and 
Pb2+ on the efficiency and stereoselectiv- 
ity of the template-directed oligomeriza- 
tion of ImpG. 

Polycytidylic acid was prepared by a 
modification of the method of Steiner 
and Beers (8); unlabeled and '4C-labeled 
ImpG were prepared by modifications of 
the procedures of Lohrmann and Orgel 
(9). (Gp),, markers were prepared by par- 
tial alkaline hydrolysis of poly(G). All 
other reagents were analytical grade. 

Paper chromatography was carried out 
on Whatman 3MM paper, with a mixture 
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Fig. 1. Elution profiles of products from the template-directed self- 
condensation of ImpG in the presence of (a) 0.01M Pb2+ or (b) 0.04M 
Zn2+. The positions of the major peaks of the 10-, 20-, and 30- 
nucleotide oligomers are indicated. The positions of all 2'-5'- and 
all 3'-5'-linked isomers of (pG)3 and (pG)4 are also indicated. The 
reaction conditions were as follows: 0.02M ImpG* (0.25 mCi/mmole), 
0.04M poly(C), 0.4M NaNO3, 0.5M Mg(NO3)2, 0.4M 2,6-lutidine buf- 
fer, pH 7.0. After the reaction mixture was held for 12 days at 0?C, 
excess EDTA was added, and the pH was adjusted to 7.9 with tris 
buffer. Pancreatic ribonuclease [0.25 mg per micromole of poly(C)] 
was added, and the solution was incubated at 37?C for 8 hours. Mate- 
rial on chromatograms (a) and (b) accounts for 86.2 and 74.6 percent of 
the products, respectively. The remaining product, pG, eluted with 
the void volume (not shown). 
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directed polymerization of an activated guanylic acid derivative, guanosine 5'- 
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in the context of the prebiotic evolution of RNA polymerase is discussed. 
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